Show simple item record

dc.contributor.authorHesse, PP
dc.contributor.authorTelfer, Matt
dc.contributor.authorFarebrother, W
dc.date.accessioned2017-02-27T15:33:50Z
dc.date.available2017-02-27T15:33:50Z
dc.date.issued2017-04
dc.identifier.issn1875-9637
dc.identifier.issn2212-1684
dc.identifier.urihttp://hdl.handle.net/10026.1/8568
dc.descriptionAbstract The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002–2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.
dc.description.abstract

Abstract The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002–2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

dc.format.extent45-61
dc.languageen
dc.language.isoen
dc.publisherElsevier BV
dc.subjectSimpson Desert
dc.subjectStrzelecki Desert
dc.subjectClimate change
dc.subjectAeolian
dc.titleComplexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia’s deserts
dc.typejournal-article
dc.typeJOUR
plymouth.author-urlhttp://www.sciencedirect.com/science/article/pii/S1875963716301410
plymouth.volume25
plymouth.publication-statusPublished
plymouth.journalAeolian Research
dc.identifier.doi10.1016/j.aeolia.2017.02.003
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA14 Geography and Environmental Studies
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2017-02-13
dc.rights.embargodate2018-2-24
dc.identifier.eissn2212-1684
dc.rights.embargoperiod12 months
rioxxterms.versionofrecord10.1016/j.aeolia.2017.02.003
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved
rioxxterms.licenseref.startdate2017-04
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV