Show simple item record

dc.contributor.authorHarris, Michelle
dc.contributor.authorCoggon, RM
dc.contributor.authorWood, M
dc.contributor.authorSmith-Duque, CE
dc.contributor.authorHenstock, TJ
dc.contributor.authorTeagle, DAH
dc.date.accessioned2017-02-20T12:30:35Z
dc.date.accessioned2017-02-20T12:31:10Z
dc.date.available2017-02-20T12:30:35Z
dc.date.available2017-02-20T12:31:10Z
dc.date.issued2017-03-15
dc.identifier.issn0012-821X
dc.identifier.issn1385-013X
dc.identifier.urihttp://hdl.handle.net/10026.1/8542
dc.descriptionpublisher: Elsevier articletitle: Hydrothermal cooling of the ocean crust: Insights from ODP Hole 1256D journaltitle: Earth and Planetary Science Letters articlelink: http://dx.doi.org/10.1016/j.epsl.2017.01.010 content_type: article copyright: © 2017 The Author(s). Published by Elsevier B.V.
dc.description.abstract

The formation of new ocean crust at mid-ocean ridges is a fundamental component of the plate tectonic cycle and involves substantial transfer of heat and mass from the mantle. Hydrothermal circulation at mid-ocean ridges is critical for the advection of latent and sensible heat from the lower crust to enable the solidification of ocean crust near to the ridge axis. The sheeted dike complex (SDC) is the critical region between the eruptive lavas and the gabbros through which seawater-derived recharge fluids must transit to exchange heat with the magma chambers that form the lower ocean crust. ODP Hole 1256D in the eastern equatorial Pacific Ocean provides the only continuous sampling of in-situ intact upper ocean crust formed at a fast spreading rate, through the SDC into the dike–gabbro transition zone. Here we exploit a high sample density profile of the Sr-isotopic composition of Hole 1256D to quantify the time-integrated hydrothermal recharge fluid flux through the SDC. Assuming kinetically limited fluid–rock Sr exchange, a fluid flux of 1.5–3.2×106 kgm−2 is required to produce the observed Sr-isotopic shifts. Despite significant differences in the distribution and intensity of hydrothermal alteration and fluid/rock Sr-isotopic exchange between Hole 1256D and SDC sampled in other oceanic environments (ODP Hole 504B, Hess Deep and Pito Deep), the estimated recharge fluid fluxes at all sites are similar, suggesting that the heat flux extracted by the upper crustal axial hydrothermal system is relatively uniform at intermediate to fast spreading rates. The hydrothermal heat flux removed by fluid flow through the SDCs, is sufficient to remove only ∼20 to 60% of the available latent and sensible heat from the lower crust. Consequently, there must be additional thermal and chemical fluid–rock exchange deeper in the crust, at least of comparable size to the upper crustal hydrothermal system. Two scenarios are proposed for the potential geometry of this deeper hydrothermal system. The first requires the downward expansion of the upper crustal hydrothermal system ∼800 m into the lower crust in response to a downward migrating conductive boundary layer. The second scenario invokes a separate hydrothermal system in the lower crust for which fluid recharge bypasses reaction with the sheeted dikes, perhaps via flow down faults.

dc.format.extent110-121
dc.languageen
dc.language.isoen
dc.publisherElsevier BV
dc.relation.replaceshttp://hdl.handle.net/10026.1/8541
dc.relation.replaces10026.1/8541
dc.subjectocean crust
dc.subjecthydrothermal
dc.subjectSr isotopes
dc.subjectheat flux
dc.titleHydrothermal cooling of the ocean crust: Insights from ODP Hole 1256D
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000395600900011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.volume462
plymouth.publication-statusAccepted
plymouth.journalEarth and Planetary Science Letters
dc.identifier.doi10.1016/j.epsl.2017.01.010
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Researchers in ResearchFish submission
dcterms.dateAccepted2017-01-11
dc.rights.embargodate2018-03-15
dc.identifier.eissn1385-013X
dc.rights.embargoperiod12 months
rioxxterms.funderNatural Environment Research Council
rioxxterms.identifier.projectDating mineral formation during mid-ocean ridge flank hydrothermal circulation: Evidence from the Juan de Fuca Ridge, IODP Expedition 327
rioxxterms.versionofrecord10.1016/j.epsl.2017.01.010
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved
rioxxterms.licenseref.startdate2017-03-15
rioxxterms.typeJournal Article/Review
plymouth.funderDating mineral formation during mid-ocean ridge flank hydrothermal circulation: Evidence from the Juan de Fuca Ridge, IODP Expedition 327::Natural Environment Research Council
plymouth.funderDating mineral formation during mid-ocean ridge flank hydrothermal circulation: Evidence from the Juan de Fuca Ridge, IODP Expedition 327::Natural Environment Research Council
plymouth.funderDating mineral formation during mid-ocean ridge flank hydrothermal circulation: Evidence from the Juan de Fuca Ridge, IODP Expedition 327::Natural Environment Research Council
plymouth.oa-locationhttp://www.sciencedirect.com/science/article/pii/S0012821X1730016X


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV