Show simple item record

dc.contributor.supervisorWennekers, Thomas
dc.contributor.authorBartsch, Ullrich
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2011-08-26T08:38:06Z
dc.date.available2011-08-26T08:38:06Z
dc.date.issued2011
dc.date.issued2011
dc.identifier390434en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/555
dc.description.abstract

The prefrontal cortex (PFC) is critically involved in many higher cognitive functions such as goaldirected behaviour, affective behaviour and especially working memory. In vivo extracellular recordings of PFC neural activity during working memory tasks show high variety in observed spiking patterns. These complex dynamics are critically shaped by intrinsic, synaptic and structural parameters of respective prefrontal networks. Moreover, dopamine (DA) is crucial for correct functioning of the PFC during working memory tasks. DA modulates a number of synaptic and intrinsic biophysical properties of single neurons, in particular deep layer pyramidal cells, which represent the major output neurons of the PFC. Despite a high variability of cortical pyramidal cell firing patterns, and somatodendritic morphology, no study has yet systematically examined correlations between intrinsic properties, morphological features and dopaminergic modulation of intrinsic properties. This study investigated properties of deep layer pyramidal cells through whole cell patch clamp in acute brain slices of the adult rat PFC. Cells were characterised physiologically through a variety of stimulation protocols surveying different time scales and wide intensity ranges, while all fast synaptic transmission was blocked. Furthermore the same catalogue of stimuli was recorded whilst applying specific DA receptor agonists to elucidate effects of DA receptor activation on intrinsic properties. All recorded cells were injected with biocytin and dendritic morphology was reconstructed from confocal image stacks of fluorescently labelled neurons. From the resulting data a set of characteristic variables were defined and a combination of principal components analysis and hierarchical cluster analysis was used to identify similarity between recorded cells in different parameter spaces spanned by intrinsic properties, intrinsic properties under dopaminergic modulation and morphology, respectively. The analysis presents evidence for distinct subpopulations within prefrontal deep layer pyramidal cells, as seen by clustering of recorded cells in these high dimensional parameter spaces. These subpopulations also show distinct input-output relationships, bearing implications for computational functions of these subpopulations. Furthermore, this study presents for the first time evidence of subpopulation specific DA effects in deep layer pyramidal cells. The quantitative analysis of somatodendritic morphology confirms physiological subpopulations and identifies characteristic morphological features of deep layer pyramidal cells. Moreover, cluster observed in different parameter spaces overlap, leading to a definition of subpopulations that concurs with previously described prefrontal pyramidal cell types. In conclusion, the results presented provide some deeper insight into fundamental principles of information processing in prefrontal pyramidal cells under the influence of dopamine.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.subjectPrefrontal Cortex
dc.subjectPyramidal cell type
dc.subjectNeural Activity
dc.subjectCognitive Function
dc.subjectDopamineen_US
dc.titlePyramidal Cell Diversity in the Rat Prefrontal Cortex: Electrophysiology, Dopamine Modulation and Morphologyen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/4291


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV