Transport conductivity of graphene at RF and microwave frequencies

Date
2016-03Author
Subject
Metadata
Show full item recordAbstract
Wemeasure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an ω2 dependence (where ω = 2πf), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ∼0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ∼2.1 ps, highlighting the influence of ACelectron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
Collections
Publisher
Journal
Volume
Issue
Pagination
Publisher URL
Number
Recommended, similar items
The following license files are associated with this item: