Show simple item record

dc.contributor.authorAbanades, Jen
dc.contributor.authorGreaves, Den
dc.contributor.authorIglesias, Gen
dc.date.accessioned2016-04-28T14:50:50Z
dc.date.available2016-04-28T14:50:50Z
dc.date.issued2014en
dc.identifier.issn0378-3839en
dc.identifier.urihttp://hdl.handle.net/10026.1/4556
dc.descriptionThe possibility of using wave farms for coastal defence warrants investigation because wave energy is poised to become a major renewable in many countries over the next decades. The fundamental question in this regard is whether a wave farm can be used to reduce beach erosion under storm conditions. If the answer to this question is positive, then a wave farm can have coastal defence as a subsidiary function, in addition to its primary role of producing carbon-free energy. The objective of this work is to address this question by comparing the response of a beach in the face of a storm in two scenarios: with and without the wave farm. For this comparison a set of ad hoc impact indicators is developed: the bed level impact (BLI), beach face eroded area (FEA), non-dimensional erosion reduction (NER), and mean cumulative eroded area (CEA); and their values are determined by means of two coupled models: a high-resolution wave propagation model (SWAN) and a coastal processes model (XBeach). The study is conducted through a case study: Perranporth Beach (UK). Backed by a well-developed dune system, Perranporth has a bar between − 5 m and − 10 m. The results show that the wave farm reduces the eroded volume by as much as 50% and thus contributes effectively to coastal protection. This synergy between marine renewable energy and coastal defence may well contribute to improving the viability of wave farms through savings in conventional coastal protection.en
dc.description.abstract

The possibility of using wave farms for coastal defence warrants investigation because wave energy is poised to become a major renewable in many countries over the next decades. The fundamental question in this regard is whether a wave farm can be used to reduce beach erosion under storm conditions. If the answer to this question is positive, then a wave farm can have coastal defence as a subsidiary function, in addition to its primary role of producing carbon-free energy. The objective of this work is to address this question by comparing the response of a beach in the face of a storm in two scenarios: with and without the wave farm. For this comparison a set of ad hoc impact indicators is developed: the bed level impact (BLI), beach face eroded area (FEA), non-dimensional erosion reduction (NER), and mean cumulative eroded area (CEA); and their values are determined by means of two coupled models: a high-resolution wave propagation model (SWAN) and a coastal processes model (XBeach). The study is conducted through a case study: Perranporth Beach (UK). Backed by a well-developed dune system, Perranporth has a bar between − 5 m and − 10 m. The results show that the wave farm reduces the eroded volume by as much as 50% and thus contributes effectively to coastal protection. This synergy between marine renewable energy and coastal defence may well contribute to improving the viability of wave farms through savings in conventional coastal protection.

en
dc.format.extent299 - 307en
dc.format.medium0en
dc.language.isoenen
dc.subjectWave energy Wave farm Erosion Nearshore impact SWAN XBeachen
dc.titleCoastal defence through wave farmsen
dc.typeJournal Article
plymouth.author-urlhttp://www.sciencedirect.com/science/article/pii/S0378383914001306en
plymouth.volume91en
plymouth.journalCoastal Engineeringen
dc.identifier.doi10.1016/j.coastaleng.2014.06.009en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/PRIMaRE Publications
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA12 Engineering
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.rights.embargoperiod6 monthsen
rioxxterms.versionofrecord10.1016/j.coastaleng.2014.06.009en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV