Show simple item record

dc.contributor.authorTappin, ADen
dc.contributor.authorLoughnane, JPen
dc.contributor.authorMcCarthy, AJen
dc.contributor.authorFitzsimons, MFen
dc.date.accessioned2016-03-24T14:52:59Z
dc.date.available2016-03-24T14:52:59Z
dc.date.issued2016-04-05en
dc.identifier.urihttp://hdl.handle.net/10026.1/4425
dc.description.abstract

Benzodiazepines are a large class of commonly-prescribed drugs used to treat a variety of clinical disorders. They have been shown to produce ecological effects at environmental concentrations, making understanding their fate in aquatic environments very important. In this study, uptake and biotransformations by riverine bacterio-plankton of the benzodiazepine, diazepam, and 2-amino-5-chlorobenzophenone, ACB (a photo-degradation product of diazepam and several other benzodiazepines), were investigated using batch microcosm incubations. These were conducted using water and bacterio-plankton populations from contrasting river catchments (Tamar and Mersey, UK), both in the presence and absence of a peptide, added as an alternative organic substrate. Incubations lasted 21 days, reflecting the expected water residence time in the catchments. In River Tamar water, 36% of diazepam (p < 0.001) was removed when the peptide was absent. In contrast, there was no removal of diazepam when the peptide was added, although the peptide itself was consumed. For ACB, 61% was removed in the absence of the peptide, and 84% in its presence (p < 0.001 in both cases). In River Mersey water, diazepam removal did not occur in the presence or absence of the peptide, with the latter again consumed, while ACB removal decreased from 44 to 22% with the peptide present. This suggests that bacterio-plankton from the Mersey water degraded the peptide in preference to both diazepam and ACB. Biotransformation products were not detected in any of the samples analysed but a significant increase in ammonium concentration (p < 0.038) was measured in incubations with ACB, confirming mineralization of the amine substituent. Sequential inoculation and incubation of Mersey and Tamar microcosms, for 5 periods of 21 days each, did not produce any evidence of increased ability of the microbial community to remove ACB, suggesting that an indigenous consortium was probably responsible for its metabolism. As ACB degradation was consistent, we propose that the aquatic photo-degradation of diazepam to ACB, followed by mineralization of ACB, is a primary removal pathway for these emerging contaminants. As ACB is photo-produced by several benzodiazepines, this pathway should be relevant for the removal of other benzodiazepines that enter the freshwater environment.

en
dc.format.extent2227 - 2236en
dc.language.isoenen
dc.subjectBacteriaen
dc.subjectBenzophenonesen
dc.subjectBiotransformationen
dc.subjectDiazepamen
dc.subjectEnvironmental Monitoringen
dc.subjectPlanktonen
dc.subjectRiversen
dc.subjectWater Pollutants, Chemicalen
dc.titleBacterio-plankton transformation of diazepam and 2-amino-5-chlorobenzophenone in river waters.en
dc.typeJournal Article
plymouth.author-urlhttp://www.ncbi.nlm.nih.gov/pubmed/25164562en
plymouth.issue10en
plymouth.volume16en
plymouth.publication-statusPublisheden
plymouth.journalEnviron Sci Process Impactsen
dc.identifier.doi10.1039/c4em00306cen
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/00 Groups by role
plymouth.organisational-group/Plymouth/00 Groups by role/Academics
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/BEACh
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
dcterms.dateAccepted2014-08-04en
dc.rights.embargodate2015-04-04en
dc.identifier.eissn2050-7895en
dc.rights.embargoperiod12 monthsen
rioxxterms.versionofrecord10.1039/c4em00306cen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden
rioxxterms.licenseref.startdate2016-04-05en
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV