Show simple item record

dc.contributor.authorGuo, Cen
dc.contributor.authorChen, Xen
dc.contributor.authorVlasenko, Ven
dc.contributor.authorStashchuk, Nen
dc.date.accessioned2015-11-28T17:31:14Z
dc.date.available2015-11-28T17:31:14Z
dc.date.issued2011-04-06en
dc.identifier.issn1463-5003en
dc.identifier.urihttp://hdl.handle.net/10026.1/3846
dc.description.abstract

A fully nonlinear, non-hydrostatic model, MITgcm, is used to investigate internal solitary waves (ISWs) from the Luzon Strait (LS). As the ISWs in the South China Sea (SCS) have drawn more and more attention in recent years, they are studied in various ways, i.e., via remote sensing images, in situ measurements, and numerical simulations. The inspiration of this paper derived from the potential flaws of different numerical models that were employed to examine ISWs. In this study, we performed three-dimensional (3D) experiments with realistic topography and stratification, as well as with fully non-hydrostatic terms in the model, which was rather important for investigating the ISWs.Modeling results showed that baroclinic tides in the LS were essentially three-dimensional (3D), and that wave structures around two ridges in the strait were complicated with interesting internal oceanic phenomena. Several zonal cross-sections were chosen to illustrate vertical structures of zonal velocity field, and to show their meridional variances together with surface horizontal velocity gradients in order to highlight the advantages of 3D modeling with fully nonlinear, non-hydrostatic terms. Following Vlasenko et al. (2005), analysis of two parameters (Froude number and slope parameter that is defined as the ratio of inclination of topography to slope of radiated rays) that govern generation regime indicated that internal waves produced in the LS were subject to a mixed lee wave regime rather than baroclinic tide regime or unsteady lee wave regime.The propagation of ISWs beyond the generation area showed that manifestation of 3D effects was not very obvious, which, through further analysis, was mainly attributed to homogeneity of topography, inaccuracy of barotropic forcing, and Kuroshio intrusion in the LS. To better understand the necessity of 3D modeling, we chose several zonal cross-sections and performed various sensitivity experiments to show discrepancies between 2D and 3D cases. © 2011 Elsevier Ltd.

en
dc.format.extent203 - 216en
dc.language.isoenen
dc.titleNumerical investigation of internal solitary waves from the Luzon Strait: Generation process, mechanism and three-dimensional effectsen
dc.typeJournal Article
plymouth.issue3-4en
plymouth.volume38en
plymouth.publication-statusPublisheden
plymouth.journalOcean Modellingen
dc.identifier.doi10.1016/j.ocemod.2011.03.002en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.1016/j.ocemod.2011.03.002en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV