Show simple item record

dc.contributor.authorHall-Spencer, JMen
dc.contributor.authorAllen, Ren
dc.date.accessioned2015-11-11T11:13:17Z
dc.date.available2015-11-11T11:13:17Z
dc.date.issued2015-11-05en
dc.identifier.urihttp://hdl.handle.net/10026.1/3797
dc.description.abstract

Anthropogenic CO2 emissions are being taken up from the atmosphere by the oceans, increasing the availability of dissolved inorganic carbon but reducing both the carbonate saturation and pH of seawater. This ocean acidification affects biological processes in a wide range of marine taxa. Here, we assess the likely responses of 'nuisance' species to ocean acidification, meaning those organisms that have undesirable effects from a human perspective. Based on a synthesis of evidence available to date, we predict increased growth and toxicity in harmful algal bloom species, and a significant increase in invasive algae in response to increased CO2 availability. Blooms of stinging jellyfish are also expected to increase since they are highly resilient to acidification. The effects of ocean acidification on invasive molluscs (eg, oyster drills), damaging echinoderms (eg, crown-of-thorns starfish), and a wide range of nuisance taxa will vary depending on species and location. In the USA, for example, the invasive crab Carcinus maenas is resilient to projected increases in CO2 and its impact on marine communities is expected to increase since it feeds on organisms that respond to ocean acidification with weaker defensive traits and lower recruitment. Conversely, the Red King Crab, Paralithodes camtschaticus, is adversely affected by acidification and so is expected to die back in the Barents Sea which it has invaded. Overall, we suspect that there will be an increase in nuisance species, as many have traits that are resilient to the combined warming and acidification caused by rising CO2 levels; region-specific assessments are needed to understand responses of nuisance species in local habitats. Finally, we highlight the need for targeted studies of the effects of global change on particularly harmful marine taxa such as the seaweed Caulerpa taxifolia, the starfish Asterias amurensis, several invasive ascidians, and the lionfish Pterois volitans.

en
dc.format.extent33 - 46en
dc.language.isoenen
dc.titleThe impact of CO2 emissions on 'nuisance' marine speciesen
dc.typeJournal Article
plymouth.volume4en
plymouth.journalResearch and Reports in Biodiversity Studiesen
dc.identifier.doi10.2147/RRBS.S70357en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/PRIMaRE Publications
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.2147/RRBS.S70357en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV