Show simple item record

dc.contributor.authorMATHEWS, TOBIAS JOHN
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-11-21T14:24:55Z
dc.date.available2013-11-21T14:24:55Z
dc.date.issued1999
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2794
dc.description.abstract

The characterisation of the properties of porous materials is of great importance in the effective management of natural and manmade systems. A sophisticated network model, 'Pore-Cor', of some of these properties has been previously developed. The present study has significantly extended the scope of the model's predictive capabilities. Flow and transport behaviour was examined in laboratory sand columns of various depths. These experiments examined unsaturated flow of water and conservative solute tracer transport through homogeneous sand samples. Flow through these was not homogeneous or repeatable. Experimental observations found that this may have been due to subtle random variations in packing, and the network model was shown to be able to simulate these. Solute transport of bromide was studied, applied both uniformly and from a point source. Both scenarios were modelled using a convection-dispersion equation, and it was demonstrated that the lateral component of such transport was highly significant. It was shown how convection-dispersion equation predictions of uniformly applied tracer transport might be improved by the application of the network model and a method for improving predicted lateral solute transport was outlined. It has been shown that levels of correlation in the distribution of differently sized voids within porous material may be responsible for large variations in permeability. This can make accurate modelling of permeability very difficult. A technique was developed for assessing the degree and nature of such correlations. The new method was tested on a variety of artificial and real samples and demonstrated to provide a quantitative assessment of such correlations. A method by which this could be used to improve network model simulations of materials possessing such correlation was described.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleVOID STRUCTURE, COLLOID AND TRACER TRANSPORT PROPERTIES OF STRATIFIED POROUS MEDIAen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/3855


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV