Show simple item record

dc.contributor.authorMAY, SARAH JANE
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-11-14T10:03:07Z
dc.date.available2013-11-14T10:03:07Z
dc.date.issued2000
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2706
dc.descriptionMerged with duplicate record 10026.1/603 on 28.02.2017 by CS (TIS)
dc.description.abstract

The overall aim of this thesis was to assess the potential of developing specific quantifiable assays of pollutant damage based on changes on the in vivo optical properties of macroalgae, applicable to laboratory and remote systems. The green macroalgae, E.intestinalis, was exposed to selected trace metals (copper and zinc), triazine herbicides (Irgarol 1051 and atrazine) and a series of alcohols (n = 1 - 9). The algal in vivo spectral properties, measured using a spectrophotometer fitted with an integrating sphere, determined changes due to exposure, and results were compared with established methods, including growth and fluorescence, to assess algal health status. Each pollutant, except zinc, had a significant (P < 0.05) effect on in vivo spectral properties at the range of concentrations used. The results indicated that the technique has potential to identify the algal systems affected by the pollutant, as signatures obtained appeared to indicate whether change was due to structure or pigments. The technique was sensitive, repeatable, and could detect individual pollutants in a copper/Irgarol 1051 mixture. The results were mathematically interpreted to provide ratios, individual wavelengths, sensitivity figures, web diagrams and QSARs to highligh.t differences between pollutant effect. The QSAR, obtained from E.intestinalis exposed to a series of alcohols, had a R2 value of0.9682 using in vivo absorptance at 680 nm and Log Kow, which corresponds with published values of 0.97 using ion leakage with the same species. However, the technique of in vivo spectral properties has the advantage of being non-invasive. Samples of E.intestinalis were collected from different field sites and their in vivo spectral responses could be grouped according to potential pollutants to which they had been exposed. In addition, the potential of extending the technique for use in remote sensing is discussed. It was concluded that the technique of monitoring in vivo spectral properties is an appropriate biomonitor to add to the expanding range of current biomonitors.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleAN EVALUATION OF THE USE OF SPECTRAL PROPERTIES IN MONITORING STRESS IN MARINE MACROALGAEen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/3805
dc.identifier.doihttp://dx.doi.org/10.24382/3805


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV