Show simple item record

dc.contributor.authorNEWMAN, ROBERT MALCOLM
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-11-07T11:19:42Z
dc.date.available2013-11-07T11:19:42Z
dc.date.issued1998
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2660
dc.description.abstract

This work addresses the problem of the production of hypermedia documentation for applications that require high reliability, particularly technical documentation in safety critical industries. One requirement of this application area is for the availability of a task-based organisation, which can guide and monitor such activities as maintenance and repair. In safety critical applications there must be some guarantee that such sequences are correctly presented. Conventional structuring and design methods for hypermedia systems do not allow such guarantees to be made. A formal design method that is based on a process algebra is proposed as a solution to this problem. Design methods of this kind need to be accessible to information designers. This is achieved by use of a technique already familiar to them: the storyboard. By development of a storyboard notation that is syntactically equivalent to a process algebra a bridge is made between information design and computer science, allowing formal analysis and refinement of the specification drafted by information designers. Process algebras produce imperative structures that do not map easily into the declarative formats used for some hypermedia systems, but can be translated into concurrent programs. This translation process, into a language developed by the author, called ClassiC, is illustrated and the properties that make ClassiC a suitable implementation target discussed. Other possible implementation targets are evaluated, and a comparative illustration given of translation into another likely target, Java.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleA VISUAL DESIGN METHOD AND ITS APPLICATION TO HIGH RELIABILITY HYPERMEDIA SYSTEMSen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/4646


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV