Show simple item record

dc.contributor.authorDove, Michael John
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-11-04T13:25:28Z
dc.date.available2013-11-04T13:25:28Z
dc.date.issued1984
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2580
dc.description.abstract

Aeronautical and marine casualty statistics indicate that the human being, when under stress or at times of peak load, can be a poor co-ordinator of the information available to him, particularly when that information is from a number of different source:, as is often the case in modern ships. Integration and co-ordination of information and its useful application in a closed loop feedback system can reduce the probability of accident as has already been demonstrated in the case of automatic landing systems for aircraft. This thesis describes the development of a digital filter/estimator for use in conjunction with an optimal controller in the automatic guidance of large ships in the approaches to a port. A non-linear mathematical model of a ship is developed and validated by comparison with data from an actual ship. The model is then used in digital computer simulations of the passage of a twin screw car ferry into the Port of Plymouth. The simulations show that the control and guidance system is capable of safely navigating the vessel along the predetermined track through noisy measurements of position, course and speed, A reduced non-linear digital simulation model is then used in the design of a minimum variance filter suitable for installation in a physical model of the car ferry. Tests with this physical model confirm the earlier full scale digital computer simulations, showing that a minimum variance filter is capable of giving very good estimates of the measured states, even though the measurement subsystems are unable to give accurate information because of noise. In the event of a malfunction of one or more of these measurement systems it is shown that the filter continues to give good estimates of all the states.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleA DIGITAL FILTER/ESTIMATOR FOR THE CONTROL OF LARGE SHIPS IN CONFINED WATERSen_US
dc.typeThesis
plymouth.versionFull version: final and full version as approved by the examiners at the time of the award of your degreeen_US
dc.identifier.doihttp://dx.doi.org/10.24382/4135


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV