Show simple item record

dc.contributor.authorKnight, Matthew John
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-11-04T12:54:14Z
dc.date.available2013-11-04T12:54:14Z
dc.date.issued2002
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2565
dc.description.abstract

Sensorless control strategies were first suggested well over a decade ago with the aim of reducing the size, weight and unit cost of electrically actuated servo systems. The resulting algorithms have been successfully applied to the induction and synchronous motor families in applications where control of armature speeds above approximately one hundred revolutions per minute is desired. However, sensorless position control remains problematic. This thesis provides an in depth investigation into sensorless motor control strategies for high precision motion control applications. Specifically, methods of achieving control of position and very low speed thresholds are investigated. The developed grey box identification techniques are shown to perform better than their traditional white or black box counterparts. Further, fuzzy model based sliding mode control is implemented and results demonstrate its improved robustness to certain classes of disturbance. Attempts to reject uncertainty within the developed models using the sliding mode are discussed. Novel controllers, which enhance the performance of the sliding mode are presented. Finally, algorithms that achieve control without a primary feedback sensor are successfully demonstrated. Sensorless position control is achieved with resolutions equivalent to those of existing stepper motor technology. The successful control of armature speeds below sixty revolutions per minute is achieved and problems typically associated with motor starting are circumvented.

en_US
dc.description.sponsorshipResearch Instruments Ltd.en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titlePrecision Control of a Sensorless Brushless Direct Current Motor Systemen_US
dc.typeThesis
plymouth.versionFull version: final and full version as approved by the examiners at the time of the award of your degreeen_US
dc.identifier.doihttp://dx.doi.org/10.24382/4261


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV