Show simple item record

dc.contributor.authorKieffer, Martin Louis
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-11-04T11:16:06Z
dc.date.available2013-11-04T11:16:06Z
dc.date.issued1996
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2557
dc.descriptionMerged with duplicate record 10026.1/629 on 27.02.2017 by CS (TIS)
dc.description.abstract

Cauliflower curd meristem activity (organogenic, plastochronic, phyllotactic) was analysed biometrically and confirmed that the curd is the product of a constant process of meristem production and branch ramification with little if any dominance between branch apices. A growth model based on curd branching pattern was developed and its mathematical expression enabled the estimation of the number of meristems carried by a curd at maturity to be over ten million which was previously widely underestimated. Analysis of the response to the in vitro culture of this meristematic tissues revealed that meristems are not predetermined to produce flower and that their shoot regeneration capacity is under several levels of control, the most important being explant physical property (size) and the culture system (nutrient supply). Optimisation of these parameters enabled the development of a low cost, semi-automated protocol for mass production of cauliflower propagules at an unprecedented scale with over 10000 propagules produced per curd. Micropropagules a few millimetres in length were produced, encapsulated in calcium alginate hydrogel, stored at 4°C for several months and used as an 'artificial seed' system of cauliflower propagation. The response to the procedure of micropropagule production is genotype-dependent with summer heading varieties being less reactive than winter heading varieties, this phenomenon was also associated with plasmalemma instability at the cellular (protoplast) level. Furthermore, this material was successfully cryopreserved in liquid nitrogen using a dehydration I vitrification method. The micropropagation protocol is of great interest when used as a regeneration system for experiments involving genetic manipulation such as genetic transformation. A preliminary study of genetic transformation by microprojectile bombardment, using the gus reporter gene, allowed transient expression in curd meristematic tissue. The fundamental and industrial implications for cauliflower breeding of the different protocols developed in this thesis are discussed.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleThe in vitro manipulation of cauliflower (Brassica oleracea L. convar. botrytis (L.) Alef. var. botrytis L.) meristematic tissues for utilisation in genetic improvement programmesen_US
dc.typeThesis
plymouth.versionFull version: final and full version as approved by the examiners at the time of the award of your degreeen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1575


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV