Show simple item record

dc.contributor.authorRYAN, KEITH PATRICK
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-10-31T11:45:01Z
dc.date.available2013-10-31T11:45:01Z
dc.date.issued1991
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2504
dc.description.abstract

This thesis describes investigations into cryofixation by the plunge-cooling technique, at ambient pressure. The objective was to characterise coolants which are commonly used for cryofixation, so that the structure and chemistry of biological specimens may be preserved in a more life-like state. The work began with the design of a suitable cooling device. This was developed further into a large test-bed apparatus which was used in both biological and methodological experiments. The large cooling apparatus demonstrated for the first time that ethane was a superior coolant under forced convection, compared to propane or Freon 22, for bare thermocouples, for exposed hydrated specimens and for metal-sandwiched hydrated specimens. Ice crystal formation was monitored in sandwiched specimens and found to correspond closely to modelling predictions. A biological application was the X-ray microanalysis of body fluids in "indicator" species of Chaetognaths, where results obtained from cryoscanning electron microscopy revealed ecophysiological differences. The use of low thermal mass supports demonstrated that good freezing can occur in the centre of specimens. A new cryomounting method was developed to load well-frozen specimens into the microscope. The effect of post-freeze processing temperature was investigated by monitoring ice crystals in red blood cells. Exposure to 213 K (-60°C) over a 48 hour period did not induce crystal growth and exposure to 233 K (-40°C) for 8 days showed minimal ice crystal damage. The progress of cryosubstitution was monitored over 48 h at 193 K ( -80°C), this showed that uranium ingressed to a depth of 320 µm which could be doubled when shrinkage was allowed for. The conclusion was that observed ice crystal damage originated during the initial freezing and not during subsequent cryoprocessing.

en_US
dc.description.sponsorshipMarine Biological Association of the United Kingdom and Plymouth Marine Laboratoryen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleRAPID CRYOGENIC FIXATION OF BIOLOGICAL SPECIMENS FOR ELECTRON MICROSCOPYen_US
dc.typeThesis
plymouth.versionFull version: final and full version as approved by the examiners at the time of the award of your degreeen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1499
dc.identifier.doihttp://dx.doi.org/10.24382/1499


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV