Show simple item record

dc.contributor.authorSmith, James Anthony
dc.contributor.otherSchool of Geography, Earth and Environmental Sciencesen_US
dc.date.accessioned2013-10-28T11:52:57Z
dc.date.available2013-10-28T11:52:57Z
dc.date.issued1995
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2412
dc.description.abstract

Long-term physical, chemical and biological monitoring (May 1990 to November 1994) was conducted in order to quantify water and sediment quality changes arising from the impoundment of Sutton Harbour, Plymouth (UK). Spore tracer studies revealed that 95 % water renewal times increased from 45 h to 72 h after impoundment. Semi-diurnal (tidal) salinity variations of circa 5 x10ˉ³ were observed, revealing a mechanism which shunts contaminated estuarine water into the harbour during flood tides. Salinity typically varied from 17 x 10ˉ³ to 34 x 10ˉ³ seasonally, and exhibited strong inverse correlations with total oxidised nitrogen and orthophosphate, demonstrating the riverine source of dissolved nutrients. These varied seasonally in concentration by 2 to 3 orders of magnitude. Impoundment restricted the flux of riverborne nutrients but greater retention of brackish bottom waters produced a stronger concentration gradient, resulting in possible nutrient storage by diffusion into the porewaters. Sewage outfalls and sediments were the main sources of ammonium. Following impoundment, the evidence suggests that a balance between nutrients from reduced external (riverine) fluxes and increased internal (porewater) fluxes has developed. Phytoplankton blooms were regular but short-lived features in summer, and continued after impoundment. Sewage contamination, with faecal coliform bacteria occasionally exceeding 30,000 cfu 100 mtˉ¹, improved unequivocally after impoundment, but stricter controls on internal sources are required. The permanently anoxic harbour sediments, consisting mainly of silt, contained Cd (1.8 µg gˉ¹), Cu (160 µg gˉ¹), Hg (1.2 µg gˉ¹), Pb (200 µg gˉ¹) and Zn (290 µg gˉ¹) in the <63 µm fraction. Sedimentary Cu, Pb and Zn concentrations increased during the monitoring period. The benthic macrofauna consists mainly of polychaete worms, with species diversity decreasing during construction, and then attaining a new, impoverished equilibrium after impoundment. Multivariate analysis revealed changes in community structure involving loss of sensitive taxa and appearance of opportunists. The ecological impact of impoundment was minimal, in that the harbour ecosystem was able to withstand the imposed environmental stresses. The management strategy adopted will ensure that water and sediment quality are maintained in Sutton Harbour; recommendations equally applicable to future harbour impoundment projects.

en_US
dc.description.sponsorshipNational Rivers Authority South Western Regionen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleEcological Management Strategies for Impounded Harboursen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/3785
dc.identifier.doihttp://dx.doi.org/10.24382/3785


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV