Show simple item record

dc.contributor.authorHATTINGH, DANIEL GERHARDUS
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2013-10-23T08:45:30Z
dc.date.available2013-10-23T08:45:30Z
dc.date.issued1998
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2300
dc.description.abstract

The nature and scope of this thesis can be divided into three categories, namely stress distribution modelling in coil springs; fatigue and failure analysis, an investigation into measurement of residual stresses and the relation to fatigue life. The operation of springs is directly concerned with the theories of torsion and bending which makes the better understanding of these theories essential. The first part of the thesis is involved with a mathematical evaluation of these theories and a case study of an isolated loop of a coil spring. The mathematical modelling is verified by measuring the strain levels in a coil spring with the aid of strain gauges located at different positions in the coil spring. This evaluation gave a better understanding of the operational stress distribution for input into the two methods currently used by industry for the fatigue testing, namely isolated loop and complete coil spring samples. The remaining part of the thesis revolves around the understanding of the relationship between fatigue life, process effects and residual stresses. The relationship between fatigue failures and process effects was investigated to reveal the mechanism responsible for component fatigue failure in a 55Cr3 automotive suspension spring steel. This was done by subjecting coil springs, withdrawn from different stages of the manufacturing process, to fatigue tests, ensuring that all possible sources of fatigue initiation in this material batch have been identified, including those not dominant in the finished component. Failures prior to shot peen process was mainly surface relate as where those withdrawn after this process were subsurface (inclusions) related. Fractographic analysis, using an XL30 scanning electron microscope, has revealed a number of sources of initiation, which are largely related to mechanical damage and inherent material defects. The results indicate that decreasing defect levels in the material would represent a valid method for enhancing the fatigue response, specifically levels of nonmetallic inclusions and surface mechanical damage, but also that certain manufacturing process stages (cold scragg) are responsible for drop in fatigue life.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleTHE FATIGUE PROPERTIES OF SPRING STEELen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/1609
dc.identifier.doihttp://dx.doi.org/10.24382/1609


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV