Show simple item record

dc.contributor.authorLOWE, CHRISTOPHER DAVID
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-10-22T09:04:27Z
dc.date.available2013-10-22T09:04:27Z
dc.date.issued2005
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2267
dc.description.abstract

Bio-optical measurements from three of the Atlantic Meridional Transect programme cruises in 2003-2004 were examined to determine spatial variation and correlations between phytoplankton variables. These cruises each crossed approximately 100° of latitude between the UK and the Falkland Islands, covering a range of environments in the Atlantic Ocean. Measurements of primary production were made using a Fast Repetition Rate Fluorometer (FRRF), concentration of phytoplankton pigments using High Performance Liquid Clrromatography (HPLC) and in situ particle absorption using a novel double cast technique with an ac9+ nine wavelength absorption/attenuation meter. Ancillary data in the form of salinity, temperature and chlorophyll concentration profiles were used to determine the spatial distribution of communities and to provide data for calibration. Cluster analysis of pigment data, using multivariate Brae-Curtis statistical analysis, produced effective partitioning of the cruises into functional regions for further work. The study showed that reference blanking was important in oceanic measurements with the FRRF and that separate blanks were required for each chamber. Blanks of unfiltered water from below the euphotic zone coincided best with blanks taken under in situ irradiance in the water column. Positive log linear relationships were shown between FRRF photosynthetic quantum efficiency (Fu/Fm) and, contrary to expectations, between photosystem 11 cross sectional area (σPSII) and measurements of chlorophyll a concentration. Comparisons between FRRF and automated flow cytometry data suggested that the photochemistries of the prokaryotes Synecococcus and Prochlorococcus are significantly different and that the photochemistry of Prochlorococcus is similar to that of eukaryotes. The concentration ratio of chlorophyll α: total pigment was found to follow a positive log linear relationship with chlorophyll a concentration, similar to that of the FRRF variables. A possible causative link between the relative loads of chlorophyll a and total pigment with FRRF variables was suggested. The novel twin filtered and unfiltered casts of the ac9+ produced acceptable particulate absorption spectra. Spectra representing chlorophyll a and total pigment concentrations demonstrated the same positive log linear relationship of the pigment measurements suggesting that this method could be used to determine pigment concentrations and therefore primary production parameters. Direct correlations were found between FRRF primary production parameters and both pigment ratios and absorption ratios, suggesting that absorption measurements could be used to a proxy for primary production parameters.

en_US
dc.description.sponsorshipPlymouth Marine Laboratoryen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleDETERMINATION OF PLANKTONIC PRIMARY PRODUCTION PARAMETERS IN THE ATLANTIC OCEAN USING IN SITU INHERENT OPTICAL PROPERTIESen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/3865
dc.identifier.doihttp://dx.doi.org/10.24382/3865


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV