Show simple item record

dc.contributor.authorPRETORIUS, WARREN GAVIN
dc.contributor.otherSchool of Geography, Earth and Environmental Sciencesen_US
dc.date.accessioned2013-10-14T08:54:49Z
dc.date.available2013-10-14T08:54:49Z
dc.date.issued1994
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2192
dc.description.abstract

A high temperature gas chromatography (HTGC)-inductively coupled plasma-mass spectrometry (ICP-MS) interface was successfully developed which allowed the analysis of metalloporphyrins (Retention Index >6000), with detection limits of less than 1 nanogram on column. The system was used together with conventional HTGC-flame ionization detection and HTGC-mass spectrometry (MS) for the analysis of geoporphyrin fractions from Julia Creek, Serpiano, Marl Slate and Green River shales. This allowed the rapid fingerprinting of the metals chelated to the porphyrins in these samples. Previously unreported titanium porphyrins were detected in two of these shales, the Marl Slate and Julia Creek. An iron porphyrin fraction from Bagworth coal was also examined for the first time using both HTGC-ICP-MS and HTGC-MS and the distributions of the ETIO porphyrins calculated. The HTGC method was found to be useful only for qualitative scanning of the geoporphyrin fractions. This was due to problems with the stability of the gas chromatographic columns used for these analyses. The columns used were found to last between 5 and 10 injections, after which the porphyrins appeared as broad humps, slowly eluting off the column. A high performance liquid chromatography (HPLC)-ICP-MS method was developed to allow the quantitative analysis of geoporphyrins, which was not possible with the HTGC-ICP-MS method. The HPLC-ICP-MS interface used allowed good chromatographic separation to be achieved, with less than 10 % loss in column efficiency. This system was used for the quantitative analysis of gallium and nickel porphyrins from coals and shales respectively. The qualitative distributions obtained for the geoporphyrins using HPLC-ICP-MS showed good agreement with the HPLC-UV/VIS results. A GC-Low Pressure-ICP-MS interface was designed and constructed and the analysis of metalloporphyrins attempted. The metalloporphyrins were not successfully eluted through the GCLP- ICP-MS system. However, a number of more volatile organometallic compounds were analysed (tetraethyl lead, ferrocene and tetrabutyltin). Interestingly the system also produced fragment molecular ions of chlorobenzene, bromobenzene and iodobenzene at low plasma powers (-10 W), using the carrier gas as the plasma gas (helium). Thus the system could be used to obtain both atomic and molecular spectra, which has not been achieved previously.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleDEVELOPMENT OF IMPROVED METHODS FOR THE ANALYSIS OF METALLOPORPHYRINS IN COALS, SEDIMENTS AND OILSen_US
dc.typeThesis
dc.identifier.doihttp://dx.doi.org/10.24382/3836
dc.identifier.doihttp://dx.doi.org/10.24382/3836


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV