Show simple item record

dc.contributor.authorSUTTON, PAUL ANTONY
dc.contributor.otherSchool of Geography, Earth and Environmental Sciencesen_US
dc.date.accessioned2013-10-07T09:48:13Z
dc.date.available2013-10-07T09:48:13Z
dc.date.issued2000
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/2048
dc.description.abstract

Organic matter which is insoluble in common solvents and non-oxidising acids often comprises the quantitatively most important fraction of organic matter in sediments. This operationally defined material is usually simply termed 'insoluble organic matter' (IOM) or 'kerogen' when it is isolated from ancient sediments. Indeed, kerogen is regarded as the most abundant form of carbon on the planet. The molecular character of this generic material has not been fully elucidated, principally because of its insolubility which limits instrumental methods of analysis to those applicable to solid substrates. This thesis describes the quantitative isolation of IOM from lacustrine and marine sediments and two species of methanogenic bacteria using a sequential isolation procedure. A range of synthetic IOMs (melanoidins) was also prepared. The dissolution of IOM and melanoidins obtained in this manner was then attempted using the acidic ionic liquid l-ethyl-3- methylimidazolium chloride-aluminium (III) chloride. Two synthetic dendrimers containing similar functional groups to those observed in sedimentary IOM were used to try and assess the mode of action of the ionic liquid. Ionic liquid treatment of the DCM soluble dendrimers resulted in the formation of 7 - 62 % of material that was no longer soluble in DCM, whilst the soluble components had been substantially altered. The ionic liquid was found to non-quantitatively promote ether cleavage, protonation and rearrangement reactions. IOM was isolated from lacustrine Rostherne Mere, UK, sediments (7 - 3 0 % dry weight), Kimmeridge Clay, Dorset (11 - 12 %) and methanogenic bacteria (Methanococcus jannaschii, 3 %; Methanobacterium thermoaiitotrophicum, 0.1 %) using a time-consuming isolation procedure involving over forty separate chemical manipulations. Monitoring of the sequential isolation of IOM and characterisation of the final isolates was carried out using solid-state NMR, IR, elemental analysis, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), scanning electron microscopy, and the newer surface sensitive technique of time of flight-secondary ion mass spectrometry (ToF-SIMS). Less than 1 % of sedimentary IOM and 5 % of Kimmeridge Clay IOM was soluble in DCM following ionic liquid treatment, whilst alkyl chains were lost from the insoluble portion which also increased in aromaticity. The poor yield recovered following ionic liquid treatment of M. jannaschii IOM (5 %) was attributed to loss of volatile material during hydrolysis. Following ionic liquid treatment 93 - 96 % of the melanoidins remained insoluble in DCM although their character had been altered, becoming more condensed. This ionic liquid dissolution procedure has not provided the substantial progress in elucidating the molecular character of IOM promised by earlier reports.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleTHE QUANTITATIVE ISOLATION OF 'INSOLUBLE ORGANIC MATTER' (IOM) FROM SEDIMENTS AND BACTERIA, AND ITS ATTEMPTED DISSOLUTION USING THE IONIC LIQUID l-ETHYL-3- METHYLIMIDAZOLIUM CHLORIDE-ALUMINIUM (HI) CHLORIDEen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/3771
dc.identifier.doihttp://dx.doi.org/10.24382/3771


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV