Show simple item record

dc.contributor.supervisorRegier, Stefanie
dc.contributor.authorRieger, Thomas
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2023-02-09T15:17:46Z
dc.date.available2023-02-09T15:17:46Z
dc.date.issued2023
dc.identifier10536298en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/20259
dc.description.abstract

In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident.

In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion.

This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture.

Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data.

As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis.

en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.subjectArtificial Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectPerformance aspects of Artificial Neural Networksen_US
dc.subjectPredictive Maintenanceen_US
dc.subjectInternet of Thingsen_US
dc.subjectLong Short-Term Memory Neural Networken_US
dc.subjectSliced Long Short-Term Memory Neural Networken_US
dc.subjectComplexity in Artificial Neural Networksen_US
dc.subject.classificationPhDen_US
dc.titleThe Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environmentsen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/632
dc.rights.embargoperiodNo embargoen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV