Show simple item record

dc.contributor.authorLi, Amei
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2013-10-03T10:21:02Z
dc.date.available2013-10-03T10:21:02Z
dc.date.issued2008
dc.date.issued2008
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/1991
dc.descriptionMerged with duplicate record 10026.1/829 on 10.04.2017 by CS (TIS)
dc.description.abstract

Three readback signal detection methods are investigated for real-time flying height or head disk spacing variation measurement under vibration conditions. This is carried out by theoretical analysis, numerical simulation, and experimental study. The first method (amplitude detection) provides a simple way to study the head disk spacing change. The second method ( PW50 parameter estimation) can be used effectively for real-time spacing variation measurement in normally operated hard disk drives, primarily in low frequency spacing variation conditions. The third method (thermal signal detection), on the other hand, is more effective and suitable for high frequency spacing variation measurement. By combining the PW50 estimation and thermal signal detection methods, a noval spacing variation detection method for the whole frequency range is constructed. This combined signal detection method not only has been used to study the head disk spacing variation itself, but also has the potential of being used for real time flying height control. Analytical models are developed for head disk assembly and head position servo control mechanisms to analyse the operation failure of hard disk drives under vibration conditions. Theoretical analysis and numerical simulation show their good agreement with experimental results. A novel active flying height control method is proposed to suppress the flying height or head-disk spacing variation in hard disk drives under vibration conditions. Simulation results show that this active flying height control can effectively suppress the head-disk spacing variation, therefore the performance and reliability of HDDs can be well improved when working in vibration conditions: The method has a good potential to be applied to future ruggedized hard disk drives.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleREAL-TIME SIGNAL PROCESSING FOR FLYING HEIGHT MEASUREMENT AND CONTROL IN HARD DRIVES SUBJECT TO SHOCK AND VIBRATIONen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/3458


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV