Water wave interactions with perforated elastic disks: Quadratic pressure discharge condition
Abstract
A numerical model within the framework of the linear potential flow theory is developed to study interactions between water waves and perforated elastic disks. The boundary element method for hydrodynamic loads and modal function expansion for structural deformation are closely coupled, and disks are either simply supported or clamped at their edges. To model the flow past a perforated surface, a quadratic pressure drop model of practical validity is adopted. The established numerical model is applied to perform a multiparameter study to investigate the effects of wave amplitude, flexural rigidity, edge conditions, and open-area ratio on the hydrodynamic responses. It is found that the nondimensional hydrodynamic responses, including: wave exciting force, hydroelastic deflection, and wave energy absorption, are increased with the increasing the incident wave amplitude due to the nonlinear nature of the quadratic pressure discharge model. With increasing the flexural rigidity or rendering stronger constraints at the edge, the perforated elastic disk experiences an increase in the wave exciting force but a reduction in hydroelastic deflection, whereas they have negligible effects on the wave power absorption.
Collections
Publisher
Journal
Volume
Issue
Pagination
Number
Recommended, similar items
The following license files are associated with this item: