Show simple item record

dc.contributor.authorStephen, Natasha
dc.contributor.authorWhitworth, A
dc.date.accessioned2022-04-07T11:31:36Z
dc.date.available2022-04-07T11:31:36Z
dc.date.issued2022-05-01
dc.identifier.issn0003-004X
dc.identifier.issn1945-3027
dc.identifier.urihttp://hdl.handle.net/10026.1/19003
dc.description.abstract

<jats:title>Abstract</jats:title> <jats:p>Jarosite and related subgroup minerals are of high importance in mineral processing, as sources and sinks for metals and acidity in the environment, and they have the potential to preserve elemental and isotopic biomarkers relevant to the search for life in the solar system. The crystal structures and chemistry of jarosite minerals affect their stability and reactivity and thus the roles they play in natural and engineered systems. Rhombohedral symmetry has been documented in natural and synthetic jarosites, whereas monoclinic symmetry has only been documented in synthetic jarosites. This research reports the occurrence of monoclinic symmetry in a natural natrojarosite sample investigated using synchrotron powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and electron backscatter diffraction (EBSD). Splitting of several rhombohedral PXRD peaks (e.g., 012, 027, and 033) into pairs of peaks was observed, with the magnitude of the splitting and the relative intensities of the pairs of peaks being almost identical to those reported for synthetic monoclinic jarosite. Rietveld refinement with room-temperature PXRD data shows an ordering of iron-site vacancies on the Fe1 site consistent with monoclinic symmetry, space group C2/m. Conversion of monoclinic unit-cell parameters into pseudo-hexagonal unit-cell parameters, specifically β′, also supports the use of a monoclinic model to describe the natrojarosite structure. Structural analysis with increasing temperature is supportive of the thermal evolution previously described for synthetic monoclinic jarosite samples, with some indications of subtle differences between synthetic and natural materials including slower rates of thermal expansion and absence of FeOHSO4 peaks for natural monoclinic jarosite. EBSD provides insight into the spatial–structural variation within the hand specimen from which the natrojarosite was sampled, demonstrating that there are areas of unambiguous monoclinic symmetry, but others where both monoclinic and rhombohedral natrojarosite coexist. The results of this study suggest that monoclinic symmetry in natural jarosites may be more prevalent than previous studies suggest. Monoclinic symmetry in jarosites is identifiable by an ordering of iron-site vacancies on the Fe1 site, splitting of specific rhombohedral XRD peaks into pairs of peaks, and an increase in jarosite symmetry (i.e., from monoclinic to rhombohedral) during heating. The splitting of peaks in monoclinic jarosites can be subtle so it is recommended that high-resolution XRD data are collected when studying the crystal structure of jarosites.</jats:p>

dc.format.extent584-594
dc.languageen
dc.language.isoen
dc.publisherMineralogical Society of America
dc.titleThe occurrence of monoclinic jarosite in natural environments
dc.typejournal-article
plymouth.issue3
plymouth.volume108
plymouth.publication-statusPublished
plymouth.journalAmerican Mineralogist
dc.identifier.doi10.2138/am-2022-8276
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences/SoGEES - Manual
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2021-08-01
dc.rights.embargodate2023-5-1
dc.identifier.eissn1945-3027
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.2138/am-2022-8276
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV