Show simple item record

dc.contributor.authorCREAGH-OSBORNE, JANE
dc.contributor.otherFaculty of Science and Engineeringen_US
dc.date.accessioned2013-09-19T12:39:50Z
dc.date.available2013-09-19T12:39:50Z
dc.date.issued1998
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/1885
dc.description.abstract

Generalized Linear Models (GLMs) (McCullagh and Nelder, 1989) provide a unified framework for fixed effect models where response data arise from exponential family distributions. Much recent research has attempted to extend the framework to include random effects in the linear predictors. Different methodologies have been employed to solve different motivating problems, for example Generalized Linear Mixed Models (Clayton, 1994) and Multilevel Models (Goldstein, 1995). A thorough review and classification of this and related material is presented. In Item Response Theory (IRT) subjects are tested using banks of pre-calibrated test items. A useful model is based on the logistic function with a binary response dependent on the unknown ability of the subject. Item parameters contribute to the probability of a correct response. Within the framework of the GLM, a latent variable, the unknown ability, is introduced as a new component of the linear predictor. This approach affords the opportunity to structure intercept and slope parameters so that item characteristics are represented. A methodology for fitting such GLMs with latent variables, based on the EM algorithm (Dempster, Laird and Rubin, 1977) and using standard Generalized Linear Model fitting software GLIM (Payne, 1987) to perform the expectation step, is developed and applied to a model for binary response data. Accurate numerical integration to evaluate the likelihood functions is a vital part of the computational process. A study of the comparative benefits of two different integration strategies is undertaken and leads to the adoption, unusually, of Gauss-Legendre rules. It is shown how the fitting algorithms are implemented with GLIM programs which incorporate FORTRAN subroutines. Examples from IRT are given. A simulation study is undertaken to investigate the sampling distributions of the estimators and the effect of certain numerical attributes of the computational process. Finally a generalized latent variable model is developed for responses from any exponential family distribution.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleLATENT VARIABLE GENERALIZED LINEAR MODELSen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/3307


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV