Show simple item record

dc.contributor.authorWatanabe, K
dc.contributor.authorWu, H-Y
dc.contributor.authorXavier, J
dc.contributor.authorjoshi, lovleen
dc.contributor.authorVollmer, F
dc.date.accessioned2022-02-11T13:38:18Z
dc.date.issued2022-02-26
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.otherARTN 2107597
dc.identifier.urihttp://hdl.handle.net/10026.1/18750
dc.description.abstract

<jats:title>Abstract</jats:title><jats:p>On‐chip silicon microcavity sensors are advantageous for the detection of virus and biomolecules due to their compactness and the enhanced light–matter interaction with the analyte. While their theoretical sensitivity is at the single‐molecule level, the fabrication of high quality (<jats:italic>Q</jats:italic>) factor silicon cavities and their integration with optical couplers remain as major hurdles in applications such as single virus detection. Here, label‐free single virus detection using silicon photonic crystal random cavities is proposed and demonstrated. The sensor chips consist of free‐standing silicon photonic crystal waveguides and do not require pre‐fabricated defect cavities or optical couplers. Residual fabrication disorder results in Anderson‐localized cavity modes which are excited by a free space beam. The <jats:italic>Q</jats:italic> ≈10<jats:sup>5</jats:sup> is sufficient for observing discrete step‐changes in resonance wavelength for the binding of single adenoviruses (≈50 nm radius). The authors’ findings point to future applications of CMOS‐compatible silicon sensor chips supporting Anderson‐localized modes that have detection capabilities at the level of single nanoparticles and molecules.</jats:p>

dc.format.extente2107597-
dc.format.mediumPrint-Electronic
dc.languageen
dc.language.isoen
dc.publisherWiley
dc.subjectAnderson localization
dc.subjectbiosensors
dc.subjectphotonic crystals
dc.subjectsilicon photonics
dc.subjectviruses
dc.titleSingle virus detection on silicon photonic crystal random cavities
dc.typejournal-article
dc.typeJournal Article
dc.typeResearch Support, Non-U.S. Gov't
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000761246600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue15
plymouth.volume18
plymouth.publication-statusPublished
plymouth.journalSmall
dc.identifier.doi10.1002/smll.202107597
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Health
plymouth.organisational-group/Plymouth/Faculty of Health/School of Biomedical Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA01 Clinical Medicine
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeGermany
dcterms.dateAccepted2022-02-04
dc.rights.embargodate2022-3-1
dc.identifier.eissn1613-6829
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1002/smll.202107597
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2022-02-26
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV