Show simple item record

dc.contributor.authorKoch, MJ
dc.contributor.authorHesketh-Best, PJ
dc.contributor.authorSmerdon, G
dc.contributor.authorWarburton, Philip
dc.contributor.authorHowell, Kerry
dc.contributor.authorUpton, Mathew
dc.date.accessioned2022-01-05T12:34:56Z
dc.date.available2022-01-05T12:34:56Z
dc.date.issued2021-12-13
dc.identifier.issn1350-0872
dc.identifier.issn1465-2080
dc.identifier.otherARTN 001123
dc.identifier.urihttp://hdl.handle.net/10026.1/18527
dc.description.abstract

Access to deep-sea sponges brings with it the potential to discover novel antimicrobial candidates, as well as novel cold- and pressure-adapted bacteria with further potential clinical or industrial applications. In this study, we implemented a combination of different growth media, increased pressure and high-throughput techniques to optimize recovery of isolates from two deep-sea hexactinellid sponges, Pheronema carpenteri and Hertwigia sp., in the first culture-based microbial analysis of these two sponges. Using 16S rRNA gene sequencing for isolate identification, we found a similar number of cultivable taxa from each sponge species, as well as improved recovery of morphotypes from P. carpenteri at 22–25 °C compared to other temperatures, which allows a greater potential for screening for novel antimicrobial compounds. Bacteria recovered under conditions of increased pressure were from the phyla Proteobacteria, Actinobacteria and Firmicutes, except at 4 %O2/5 bar, when the phylum Firmicutes was not observed. Cultured isolates from both sponge species displayed antimicrobial activity against Micrococcus luteus, Staphylococcus aureus and Escherichia coli.

dc.format.extent001123-
dc.format.mediumPrint
dc.languageen
dc.language.isoen
dc.publisherMicrobiology Society
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectsponge
dc.subjectnatural product discovery
dc.subjecthexactinellid
dc.subjectantimicrobial
dc.subjectculture
dc.titleImpact of growth media and pressure on the diversity and antimicrobial activity of isolates from two species of hexactinellid sponge
dc.typejournal-article
dc.typeJournal Article
dc.typeResearch Support, Non-U.S. Gov't
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000743262000010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue12
plymouth.volume167
plymouth.publication-statusPublished
plymouth.journalMicrobiology
dc.identifier.doi10.1099/mic.0.001123
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Health
plymouth.organisational-group/Plymouth/Faculty of Health/School of Biomedical Sciences
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA01 Clinical Medicine
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Institute of Translational and Stratified Medicine (ITSMED)
plymouth.organisational-group/Plymouth/Research Groups/Institute of Translational and Stratified Medicine (ITSMED)/CBR
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Research Groups/Plymouth Institute of Health and Care Research (PIHR)
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Researchers in ResearchFish submission
dc.publisher.placeEngland
dcterms.dateAccepted2021-11-03
dc.rights.embargodate2022-1-6
dc.identifier.eissn1465-2080
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1099/mic.0.001123
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc/4.0/
rioxxterms.licenseref.startdate2021-12-13
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV