Show simple item record

dc.contributor.authorFENNESSY, MICHAEL JIM
dc.contributor.otherSchool of Biological and Marine Sciencesen_US
dc.date.accessioned2013-09-18T10:34:13Z
dc.date.available2013-09-18T10:34:13Z
dc.date.issued1994
dc.identifierNOT AVAILABLEen_US
dc.identifier.urihttp://hdl.handle.net/10026.1/1836
dc.description.abstract

An instrument has been developed to observe the settling of individual flocs in turbid water in order to to measure size and settling velocity spectra of estuarine cohesive suspended sediments. INSSEV - IN Situ SEttling Velocity instrument - is bed mounted and comprises a computer controlled decelerator chamber that collects a sample of water from which some of the suspended matter is allowed to enter the top of a settling column. The settling flocs are viewed using a miniature video system. Subsequent analysis of video tapes provides direct measurements of size and settling velocity of individual flocs down to 20 um. From this information floc effective density is estimated. The main feature of the instrument is its ability to video flocs in situ irrespective of the concentration in the estuary, with as little disturbance to their hydrodynamic environment as possible. In addition to size and settling velocity distributions, data analysis developed for the instrument produces spectra of concentration and settling flux with respect to size, settling velocity or effective density. This is the first time that these parameters have been measured in situ. Field testing in the Tamar Estuary, South West England, and the Elbe Estuary, Germany, has given useful results in flow velocities up to 0.6 m s-1 and in concentrations up to 400 mg l-1 INSSEV was used in the 1993 Elbe Intercalibration Experiment where nearly all types of instrumentation for the in situ determination of estuarine floc size and/or settling velocity were deployed over several tidal cycles. From observations in the turbidity maximum of the Tamar Estuary, INSSEV data has shown significant changes in floc population characteristics during the tidal cycle, the most important being changes in floc effective density. A strong relationship between floc effective density and ambient turbulence characteristics is shown.

en_US
dc.description.sponsorshipPlymouth Marine Laboratoryen_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouthen_US
dc.titleDevelopment and testing of an instrument to measure estuarine floc size and settling velocity in situen_US
dc.typeThesis
plymouth.versionFull versionen_US
dc.identifier.doihttp://dx.doi.org/10.24382/1445
dc.identifier.doihttp://dx.doi.org/10.24382/1445


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV