Show simple item record

dc.contributor.authorChatzisymeon, Een
dc.contributor.authorFoteinis, Sen
dc.contributor.authorBorthwick, AGLen
dc.date.accessioned2021-08-22T16:57:12Z
dc.date.available2021-08-22T16:57:12Z
dc.date.issued2017-06-01en
dc.identifier.issn0948-3349en
dc.identifier.urihttp://hdl.handle.net/10026.1/17708
dc.description.abstract

Purpose: As the scale of the organic cultivation sector keeps increasing, there is growing demand for reliable data on organic agriculture and its effect on the environment. Conventional agriculture uses chemical fertilizers and pesticides, whilst organic cultivation mainly relies on crop rotation and organic fertilizers. The aim of this work is to quantify and compare the environmental sustainability of typical conventional and organic pepper cultivation systems. Methods: Two open field pepper cultivations, both located in the Anthemountas basin, Northern Greece, are selected as case studies. Life cycle assessment (LCA) is used to quantify the overall environmental footprint and identify particular environmental weaknesses (i.e. unsustainable practices) of each cultivation system. Results are analysed at both midpoint and endpoint levels in order to obtain a comprehensive overview of the environmental sustainability of each system. Attributional LCA (ALCA) is employed to identify emissions associated with the life cycles of the two systems. Results are presented for problem-oriented (midpoint) and damage-oriented (endpoint) approaches, using ReCiPe impact assessment. Results and discussion: At midpoint level, conventional cultivation exhibits about threefold higher environmental impact on freshwater eutrophication, than organic cultivation. This arises from the extensive use of nitrogen and phosphorus-based fertilizers, with consequent direct emissions to the environment. The remaining impact categories are mainly affected by irrigation, with associated indirect emissions linked to electricity production. At endpoint level, the main hotspots identified for conventional cultivation are irrigation and fertilizing, due to intensive use of chemical fertilizers and (to a lesser degree) pesticides. For organic pepper cultivation, the main environmental hotspots are irrigation, machinery use, and manure loading and spreading processes. Of these, the highest score for irrigation derives from the heavy electricity consumption required for groundwater pumping associated with the fossil-fuel-dependent Greek electricity mix. Conclusions: Organic and conventional cultivation systems have similar total environmental impacts per unit of product, with organic cultivation achieving lower environmental impacts in ‘freshwater eutrophication’, ‘climate change’, ‘terrestrial acidification’ and ‘marine eutrophication’ categories. Conventional cultivation has a significantly greater effect on the freshwater eutrophication impact category, due to phosphate emissions arising from application of chemical fertilizers.

en
dc.format.extent896 - 908en
dc.language.isoenen
dc.titleLife cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation systemen
dc.typeJournal Article
plymouth.issue6en
plymouth.volume22en
plymouth.publication-statusPublisheden
plymouth.journalInternational Journal of Life Cycle Assessmenten
dc.identifier.doi10.1007/s11367-016-1204-8en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.identifier.eissn1614-7502en
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.1007/s11367-016-1204-8en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV