Show simple item record

dc.contributor.authorMcCoy, JCSen
dc.contributor.authorSpicer, JIen
dc.contributor.authorTills, Oen
dc.contributor.authorRundle, SDen

<jats:p>There is growing evidence that maternal exposure to environmental stressors can alter offspring phenotype and increase fitness. Here, we investigate the relative and combined effects of maternal and developmental exposure to mild hypoxia (65% and 74% air saturation respectively) on the growth and development of embryos of the marine gastropod Littorina littorea. Differences in embryo morphological traits were driven by the developmental environment, whereas the maternal environment and interactive effects of maternal and developmental environment were the main driver of differences in the timing of developmental events. While developmental exposure to mild hypoxia significantly increased the area of an important respiratory organ, the velum, it significantly delayed hatching of veliger larvae and reduced their size at hatching and overall survival. Maternal exposure had a significant effect on these traits, and interacted with developmental exposure to influence the time of appearance of morphological characters, suggesting that both are important in affecting developmental trajectories. A comparison between embryos that successfully hatched and those that died in mild hypoxia revealed that survivors exhibited hypertrophy in the velum and associated pre-oral cilia suggesting these traits are linked with survival in low oxygen environments. We conclude that both maternal and developmental environments shape offspring phenotype in a species with a complex, developmental life history, and that plasticity in embryo morphology arising from exposure to even small reductions in oxygen tensions impacts the hatching success of these embryos.</jats:p>

dc.publisherThe Company of Biologistsen
dc.titleBoth maternal and embryonic exposure to mild hypoxia influence embryonic development of the intertidal gastropod Littorina littorea (Linnaeus, 1758)en
dc.typeJournal Article
plymouth.journalJournal of Experimental Biologyen
plymouth.organisational-group/Plymouth/Admin Group - REF
plymouth.organisational-group/Plymouth/Admin Group - REF/REF Admin Group - FoSE
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
plymouth.organisational-group/Plymouth/Users by role/Post-Graduate Research Students
plymouth.organisational-group/Plymouth/Users by role/Professional Services staff
dc.rights.embargoperiodNot knownen
rioxxterms.typeJournal Article/Reviewen

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV