Show simple item record

dc.contributor.authorBingham, HBen
dc.contributor.authorYu, Y-Hen
dc.contributor.authorNielsen, Ken
dc.contributor.authorTran, TTen
dc.contributor.authorKim, K-Hen
dc.contributor.authorPark, Sen
dc.contributor.authorHong, Ken
dc.contributor.authorSaid, HAen
dc.contributor.authorKelly, Ten
dc.contributor.authorRingwood, JVen
dc.contributor.authorRead, RWen
dc.contributor.authorRansley, Een
dc.contributor.authorBrown, Sen
dc.contributor.authorGreaves, Den
dc.date.accessioned2021-03-22T09:47:13Z
dc.date.available2021-03-22T09:47:13Z
dc.date.issued2021-03-19en
dc.identifier.issn1996-1073en
dc.identifier.urihttp://hdl.handle.net/10026.1/16968
dc.description.abstract

<jats:p>This paper reports on an ongoing international effort to establish guidelines for numerical modeling of wave energy converters, initiated by the International Energy Agency Technology Collaboration Program for Ocean Energy Systems. Initial results for point absorbers were presented in previous work, and here we present results for a breakwater-mounted Oscillating Water Column (OWC) device. The experimental model is at scale 1:4 relative to a full-scale installation in a water depth of 12.8 m. The power-extracting air turbine is modeled by an orifice plate of 1–2% of the internal chamber surface area. Measurements of chamber surface elevation, air flow through the orifice, and pressure difference across the orifice are compared with numerical calculations using both weakly-nonlinear potential flow theory and computational fluid dynamics. Both compressible- and incompressible-flow models are considered, and the effects of air compressibility are found to have a significant influence on the motion of the internal chamber surface. Recommendations are made for reducing uncertainties in future experimental campaigns, which are critical to enable firm conclusions to be drawn about the relative accuracy of the numerical models. It is well-known that boundary element method solutions of the linear potential flow problem (e.g., WAMIT) are singular at infinite frequency when panels are placed directly on the free surface. This is problematic for time-domain solutions where the value of the added mass matrix at infinite frequency is critical, especially for OWC chambers, which are modeled by zero-mass elements on the free surface. A straightforward rational procedure is described to replace ad-hoc solutions to this problem that have been proposed in the literature.</jats:p>

en
dc.format.extent1718 - 1718en
dc.languageenen
dc.language.isoenen
dc.publisherMDPIen
dc.titleOcean Energy Systems Wave Energy Modeling Task 10.4: Numerical Modeling of a Fixed Oscillating Water Columnen
dc.typeJournal Article
plymouth.issue6en
plymouth.volume14en
plymouth.journalEnergiesen
dc.identifier.doi10.3390/en14061718en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/PRIMaRE Publications
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA12 Engineering
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2021-03-16en
dc.rights.embargodate2021-03-23en
dc.identifier.eissn1996-1073en
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.3390/en14061718en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2021-03-19en
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV