Show simple item record

dc.contributor.authorTomkins, AG
dc.contributor.authorAlkemade, SL
dc.contributor.authorNutku, SE
dc.contributor.authorStephen, Natasha
dc.contributor.authorFinch, MA
dc.contributor.authorJeon, H
dc.date.accessioned2020-07-30T11:07:06Z
dc.date.available2020-07-30T11:07:06Z
dc.date.issued2020-07-22
dc.identifier.issn0016-7037
dc.identifier.issn1872-9533
dc.identifier.urihttp://hdl.handle.net/10026.1/16123
dc.descriptionkeywords: Sulfur, sulfate, Mars, S-MIF, regolith, atmosphere
dc.description.abstract

The past Martian atmosphere is often compared to the Archean Earth’s as both were dominated by CO2-rich and O2-poor chemistries. Archean Earth rocks preserve mass-independently fractionated sulfur isotopes (S-MIF; non-zero Δ33S and Δ36S), originating from photochemistry in an anoxic atmosphere. Thus, Martian crustal rocks might also be expected to preserve a S-MIF signature, providing insights into past atmospheric chemistry. We have used secondary ion mass spectrometry (SIMS) to investigate in situ, the sulfur isotope systematics of NWA 8171 (paired to NWA 7034), a Martian polymict breccia containing pyrite that formed through hydrothermal sulfur addition in a near-surface regolith setting. In this meteorite, pyrite grains have a weighted mean of Δ33S of -0.14 ± 0.08 ‰ and Δ36S = -0.70 ± 0.40 ‰ (2 s.e.m.), so the S-MIF signature is subtle. Sulfur isotope data for four additional shergottites yield Δ33S values that are not resolvable from zero, as in previous studies of shergottites. At first glance the result for the polymict breccia might seem surprising, but no Martian meteorite yet has yielded a S-MIF signature akin to the large deviations seen on Earth. We suggest that S-MIF-bearing aerosols (H2SO4 and S8) were produced when volcanic activity pushed a typically oxidising Martian atmosphere into a reduced state. After rain-out of these aerosols, S8 would tend to be oxidised by chlorate, dampening the S-MIF signal, which might be somewhat retained in the more abundant photolytic sulfate. Then in the regolith, mixing of aqueous surface-derived sulfate with igneous sulfide (the latter with zero MIF), to form the abundant pyrite seen in NWA 8171, would further dampen the S-MIF signal. Nonetheless, the small negative Δ33S anomalies seen in Martian meteorites imply that volcanic activity was sufficient to produce a reducing atmosphere at times. This volcanically-driven atmospheric evolution would tend to produce high levels of carbonyl sulfide (OCS). Given that OCS is a relatively long-lived strong greenhouse gas, the S-MIF signal implies that volcanism periodically generated warmer conditions, perhaps offering an evidence-based solution to the young wet Mars paradox.

dc.format.extent59-75
dc.languageen
dc.language.isoen
dc.publisherElsevier BV
dc.subjectSulfur
dc.subjectSulfate
dc.subjectMars
dc.subjectS-MIF
dc.subjectRegolith
dc.subjectAtmosphere
dc.titleA small S-MIF signal in Martian regolith pyrite: Implications for the atmosphere
dc.typejournal-article
dc.typearticle
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000579790500005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.volume290
plymouth.publisher-urlhttp://www.sciencedirect.com/science/article/pii/S0016703720304427
plymouth.publication-statusPublished
plymouth.journalGeochimica et Cosmochimica Acta
dc.identifier.doi10.1016/j.gca.2020.07.022
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences/SoGEES - Manual
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2020-07-10
dc.rights.embargodate2021-7-22
dc.identifier.eissn1872-9533
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1016/j.gca.2020.07.022
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-07-22
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV