Show simple item record

dc.contributor.authorCampbell, Lucy
dc.contributor.authorMenegon, Luca
dc.date.accessioned2020-07-09T09:07:56Z
dc.date.available2020-07-09T09:07:56Z
dc.date.issued2019-10-14
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttp://hdl.handle.net/10026.1/15901
dc.description6 months embargo, already passed by the time of deposit.
dc.description.abstract

Understanding the ability of the lower crust to support transient changes in stresses and strain rates during the earthquake cycle requires a detailed investigation of the deformation mechanisms and rheology of deep crustal fault rocks. Here, we show that lower crustal pseudotachylyte-bearing shear zones are able to accommodate short-term episodes of high strain rate and high stress deformation by accelerated viscous creep, followed by a reduction in stresses to some ambient deformation condition. Quartz microstructure within pseudotachylyte-bearing shear zones in otherwise undeformed granulites from Lofoten, Norway, indicates that dynamic recrystallization occurred during viscous creep under rapid strain rates and high stresses of ~10−9 s−1 and ~100 MPa, respectively. Lower stress microstructures (i.e., foam textures) are also recorded in the shear zones, indicating spatial and temporal variations of stress and strain rate during deformation cycles. Both the high and lower stress quartz recrystallization took place under granulite facies conditions of 650°C–750°C and 0.7–0.8 GPa and represented a record of highly localized viscous creep within the lower crust. This implies that lower crustal pseudotachylytes are potentially able to form extremely localized weak zones within strong lower crust, enabling a deep mechanical response to perturbations in stress and strain rate such as those experienced during the seismic cycle, for example, seismogenic loading followed by subsequent postseismic relaxation.

dc.format.extent10240-10260
dc.languageen
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjecttransient deformation
dc.subjectshear zone
dc.subjectpseudotachylyte
dc.subjectlower crust
dc.subjectearthquake cycle
dc.titleTransient High Strain Rate During Localized Viscous Creep in the Dry Lower Continental Crust (Lofoten, Norway)
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000493037700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue10
plymouth.volume124
plymouth.publication-statusPublished
plymouth.journalJournal of Geophysical Research: Solid Earth
dc.identifier.doi10.1029/2019jb018052
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
dcterms.dateAccepted2019-09-27
dc.rights.embargodate2020-7-22
dc.identifier.eissn2169-9356
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1029/2019jb018052
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
rioxxterms.licenseref.startdate2019-10-14
rioxxterms.typeJournal Article/Review
plymouth.funderTHE GEOLOGICAL RECORD OF THE EARTHQUAKE CYCLE IN THE LOWER CRUST::NERC


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV