Show simple item record

dc.contributor.supervisorMassoth, Michael
dc.contributor.authorMarkert, Jürgen
dc.contributor.otherSchool of Engineering, Computing and Mathematicsen_US
dc.date.accessioned2020-06-20T11:20:40Z
dc.date.available2020-06-20T11:20:40Z
dc.date.issued2020
dc.identifier10349074en_US
dc.identifier.urihttp://hdl.handle.net/10026.1/15787
dc.description.abstract

People have understood that computer systems need safeguarding and require knowledge of security principles for their protection. While this has led to solutions for system components such as malware-protection, firewalls and intrusion detection systems, the ubiquitous usage of tiny microcomputers appeared at the same time. A new interconnectivity is on the rise in our lives. Things become “smart” and increasingly build new networks of devices. In this context the wireless sensor networks here interact with users and also, vice versa as well; unprivileged users able to interact with the wireless sensor network may harm the privileged user as a result. The problem that needs to be solved consists of possible harm that may be caused by an unprivileged user interacting with the wireless sensor network of a privileged user and may come via an attack vector targeting a vul- nerability that may take as long as it is needed and the detection of such mal-behaviour can only be done if a sensing component is implemented as a kind of tool detecting the status of the attacked wireless sensor network component and monitors this problem happening as an event that needs to be researched further on. Innovation in attack detection comprehension is the key aspect of this work, because it was found to be a set of hitherto not combined aspects, mechanisms, drafts and sketches, lacking a central combined outcome. Therefore the contribution of this thesis consists in a span of topics starting with a summary of attacks, possible countermeasures and a sketch of the outcome to the design and implementation of a viable product, concluding in an outlook at possible further work. The chosen path for the work in this research was experimental prototype construction following an established research method that first highlights the analysis of attack vectors to the system component and then evaluates the possibilities in order to im- prove said method. This led to a concept well known in common large-scale computer science systems, called a honeypot. Its common definitions and setups were analy- sed and the concept translation to the wireless sensor network domain was evaluated. Then the prototype was designed and implemented. This was done by following the ap- proach set by the science of cybersecurity, which states that the results of experiments and prototypes lead to improving knowledge intentionally for re-use.

en_US
dc.language.isoen
dc.publisherUniversity of Plymouth
dc.subject.classificationPhDen_US
dc.titleHoneypot for Wireless Sensor Networksen_US
dc.typeThesis
plymouth.versionpublishableen_US
dc.identifier.doihttp://dx.doi.org/10.24382/832
dc.rights.embargoperiodNo embargoen_US
dc.type.qualificationDoctorateen_US
rioxxterms.versionNA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV