Show simple item record

dc.contributor.authorTiwari, R
dc.contributor.authorGloor, E
dc.contributor.authorCruz, WJA
dc.contributor.authorSchwantes Marimon, B
dc.contributor.authorMarimon‐Junior, BH
dc.contributor.authorReis, SM
dc.contributor.authorSouza, IA
dc.contributor.authorKrause, HG
dc.contributor.authorSlot, M
dc.contributor.authorWinter, K
dc.contributor.authorAshley, D
dc.contributor.authorBéu, RG
dc.contributor.authorBorges, CS
dc.contributor.authorDa Cunha, M
dc.contributor.authorFauset, S
dc.contributor.authorFerreira, LDS
dc.contributor.authorGonçalves, MDA
dc.contributor.authorLopes, TT
dc.contributor.authorMarques, EQ
dc.contributor.authorMendonça, NG
dc.contributor.authorMendonça, NG
dc.contributor.authorNoleto, PT
dc.contributor.authorOliveira, CHL
dc.contributor.authorOliveira, MA
dc.contributor.authorPireda, S
dc.contributor.authorSantos Prestes, NCC
dc.contributor.authorSantos, DM
dc.contributor.authorSantos, EB
dc.contributor.authorSilva, ELS
dc.contributor.authorSouza, IA
dc.contributor.authorSouza, LJ
dc.contributor.authorVitória, AP
dc.contributor.authorFoyer, CH
dc.contributor.authorGalbraith, D
dc.date.accessioned2020-05-27T08:39:12Z
dc.date.issued2021-07
dc.identifier.issn0140-7791
dc.identifier.issn1365-3040
dc.identifier.otherpce.13770
dc.identifier.urihttp://hdl.handle.net/10026.1/15704
dc.description.abstract

<jats:title>Abstract</jats:title><jats:p>Tropical forests are experiencing unprecedented high‐temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high‐temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (<jats:italic>F</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>/<jats:italic>F</jats:italic><jats:sub><jats:italic>m</jats:italic></jats:sub>) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress. <jats:italic>T</jats:italic><jats:sub>50</jats:sub> was calculated as the temperature at which <jats:italic>F</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>/<jats:italic>F</jats:italic><jats:sub><jats:italic>m</jats:italic></jats:sub> was half the maximum value. <jats:italic>T</jats:italic><jats:sub>5</jats:sub> is defined as the breakpoint temperature, at which <jats:italic>F</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>/<jats:italic>F</jats:italic><jats:sub><jats:italic>m</jats:italic></jats:sub> decline was initiated. Leaf thermotolerance in the rapidly warming southern Amazonia was the highest recorded for forest tree species globally. <jats:italic>T</jats:italic><jats:sub>50</jats:sub> and <jats:italic>T</jats:italic><jats:sub>5</jats:sub> varied between species, with one mid‐storey species, <jats:italic>Amaioua guianensis</jats:italic>, exhibiting particularly high <jats:italic>T</jats:italic><jats:sub>50</jats:sub> and <jats:italic>T</jats:italic><jats:sub>5</jats:sub> values. While the <jats:italic>T</jats:italic><jats:sub>50</jats:sub> values of the species sampled were several degrees above the maximum air temperatures experienced in southern Amazonia, the <jats:italic>T</jats:italic><jats:sub>5</jats:sub> values of several species are now exceeded under present‐day maximum air temperatures.</jats:p>

dc.format.extent2428-2439
dc.format.mediumPrint-Electronic
dc.languageen
dc.language.isoen
dc.publisherWiley
dc.subjectAmazon forest
dc.subjecthigh-temperature tolerance
dc.subjectphotosynthesis
dc.subjectPSII maximum quantum yield
dc.subjecttropical evergreen trees
dc.titlePhotosynthetic quantum efficiency in south‐eastern Amazonian trees may be already affected by climate change
dc.typejournal-article
dc.typeJournal Article
dc.typeResearch Support, Non-U.S. Gov't
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000529301500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue7
plymouth.volume44
plymouth.publication-statusPublished
plymouth.journalPlant, Cell & Environment
dc.identifier.doi10.1111/pce.13770
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA06 Agriculture, Veterinary and Food Science
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeUnited States
dcterms.dateAccepted2020-03-28
dc.rights.embargodate2020-5-28
dc.identifier.eissn1365-3040
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1111/pce.13770
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV