Show simple item record

dc.contributor.authorVanderhaeghe, Oen
dc.contributor.authorLaurent, Oen
dc.contributor.authorGardien, Ven
dc.contributor.authorMoyen, J-Fen
dc.contributor.authorGébelin, Aen
dc.contributor.authorChelle-Michou, Cen
dc.contributor.authorCouzinié, Sen
dc.contributor.authorVillaros, Aen
dc.contributor.authorBellanger, Men
dc.date.accessioned2020-04-27T13:22:04Z
dc.date.available2020-04-27T13:22:04Z
dc.identifier.issn0037-9409en
dc.identifier.urihttp://hdl.handle.net/10026.1/15600
dc.description.abstract

<jats:p>We present here a tectonic-geodynamic model for the generation and flow of partially molten rocks and magmatism during the Variscan orogenic evolution from the Silurian to the late Carboniferous based on a synthesis of geological data from the French Massif Central. Eclogite facies metamorphism of mafic and ultramafic rocks records the subduction of the Gondwana hyperextended margin. Part of these eclogites are forming boudins-enclaves in felsic HP granulite facies migmatites partly retrogressed into amphibolite facies attesting for continental subduction followed by thermal relaxation and decompression. We propose that HP partial melting has triggered mechanical decoupling of the partially molten continental rocks from the subducting slab. This would have allowed buoyancy-driven exhumation and entrainment of pieces of oceanic lithosphere and subcontinental mantle. Geochronological data of the eclogite-bearing HP migmatites points to diachronous emplacement of distinct nappes from middle to late Devonian. These nappes were thrusted onto metapelites and orthogneisses affected by MP/MT greenschist to amphibolite facies metamorphism reaching partial melting attributed to the late Devonian to early Carboniferous thickening of the crust. The emplacement of laccoliths rooted into strike-slip transcurrent shear zones capped by low-angle detachments from c. 345 to c. 310 Ma is concomitant with the southward propagation of the Variscan deformation front marked by deposition of clastic sediments in foreland basins. These features reflect the horizontal growth of the Variscan belt and the formation of an orogenic plateau by gravity-driven lateral flow of the partially molten orogenic root. The diversity of the magmatic rocks points to various crustal sources with modest, but systematic mantle-derived input. In the eastern French Massif Central, the southward decrease in age of the mantle- and crustal-derived plutonic rocks from c. 345 Ma to c. 310 Ma suggests southward retreat of a northward subducting slab toward the Paleothethys free boundary. Late Carboniferous destruction of the Variscan belt is dominantly achieved by gravitational collapse accommodated by the activation of low-angle detachments and the exhumation-crystallization of the partially molten orogenic root forming crustal-scale LP migmatite domes from c. 305 Ma to c. 295 Ma, coeval with orogen-parallel flow in the external zone. Laccoliths emplaced along low-angle detachments and intrusive dykes with sharp contacts correspond to the segregation of the last melt fraction leaving behind a thick accumulation of refractory LP felsic and mafic granulites in the lower crust. &#x0D; This model points to the primordial role of partial melting and magmatism in the tectonic-geodynamic evolution of the Variscan orogenic belt. In particular, partial melting and magma transfer (i) triggers mechanical decoupling of subducted units from the downgoing slab and their syn-orogenic exhumation; (ii) the development of an orogenic plateau by lateral flow of the low-viscosity partially molten crust; and, (iii) the formation of metamorphic core complexes and domes that correspond to post-orogenic exhumation during gravitational collapse. All these processes contribute to differentiation and stabilisation of the orogenic crust.&#x0D; </jats:p>

en
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.titleFlow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Centralen
dc.typeJournal Article
plymouth.journalBSGF - Earth Sciences Bulletinen
dc.identifier.doi10.1051/bsgf/2020013en
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
dcterms.dateAccepted2020-04-21en
dc.rights.embargodate2020-07-03en
dc.identifier.eissn1777-5817en
dc.rights.embargoperiodNot knownen
rioxxterms.versionofrecord10.1051/bsgf/2020013en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV