Show simple item record

dc.contributor.authorFrancesconi, Oen
dc.contributor.authorHolzmann, Men
dc.contributor.authorLucini, Ben
dc.contributor.authorRago, Aen
dc.contributor.authorRantaharju, Jen
dc.description7 pages, 4 figures, presented at the 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, Chinaen

The study of QFTs at finite density is hindered by the presence of the so-called sign problem. The action definition of such systems is, in fact, complex-valued making standard importance sampling Monte Carlo methods ineffective. In this work, we shall review the generalized density of states method for complex action systems and the Linear Logarithmic Relaxation algorithm (LLR). We will focus on the recent developments regarding the bias control of the LLR method and the evaluation of general observables in the DoS+LLR framework. Recent results on the well-known relativistic Bose gas will be presented, proving that in our approach the phase factor can be consistently evaluated over hundreds of orders of magnitude. A first exploratory study on the Thirring model in the DoS formalism will be presented as well.

dc.titleComputing general observables in lattice models with complex actionsen
dc.typeJournal Article
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Engineering, Computing and Mathematics
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/EXTENDED UoA 10 - Mathematical Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA10 Mathematical Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.rights.embargoperiodNot knownen
rioxxterms.typeJournal Article/Reviewen

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV