Show simple item record

dc.contributor.authorBicknell, AWJ
dc.contributor.authorSheehan, Emma
dc.contributor.authorGodley, BJ
dc.contributor.authorDoherty, PD
dc.contributor.authorWitt, MJ
dc.date.accessioned2019-05-01T13:47:36Z
dc.date.available2019-05-01T13:47:36Z
dc.date.issued2019-04-16
dc.identifier.issn0141-1136
dc.identifier.issn1879-0291
dc.identifier.urihttp://hdl.handle.net/10026.1/13760
dc.description.abstract

Detecting the effects of introduced artificial structures on the marine environment relies upon research and monitoring programs that can provide baseline data and the necessary statistical power to detect biological and/or ecological change over relevant spatial and temporal scales. Here we report on, and assess the use of, Baited Remote Underwater Video (BRUV) systems as a technique to monitor diversity, abundance and assemblage composition data to evaluate the effects of marine renewable energy infrastructure on mobile epi-benthic species. The results from our five-year study at a wave energy development facility demonstrate how annual natural variation (time) and survey design (spatial scale and power) are important factors in the ability to robustly detect change in common ecological metrics of benthic and bentho-pelagic ecosystems of the northeast Atlantic. BRUV systems demonstrate their capacity for use in temperate, high energy marine environments, but also how weather, logistical and technical issues require increased sampling effort to ensure statistical power to detect relevant change is achieved. These factors require consideration within environmental impact assessments if such survey methods are to identify and contribute towards the management of potential positive or negative effects on benthic systems.

dc.format.extent126-137
dc.format.mediumPrint-Electronic
dc.languageen
dc.language.isoen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectMarine monitoring
dc.subjectHuman impact
dc.subjectRenewable energy
dc.subjectPower analysis
dc.subjectBRUV
dc.titleAssessing the impact of introduced infrastructure at sea with cameras: A case study for spatial scale, time and statistical power
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000471359000013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.volume147
plymouth.publication-statusPublished
plymouth.journalMarine Environmental Research
dc.identifier.doi10.1016/j.marenvres.2019.04.007
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/PRIMaRE Publications
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeEngland
dcterms.dateAccepted2019-04-11
dc.rights.embargodate2019-12-18
dc.identifier.eissn1879-0291
dc.rights.embargoperiodNot known
rioxxterms.funderEPSRC
rioxxterms.identifier.projectPartnership for Research In Marine Renewable Energy (PRIMaRE)
rioxxterms.versionofrecord10.1016/j.marenvres.2019.04.007
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
rioxxterms.licenseref.startdate2019-04-16
rioxxterms.typeJournal Article/Review
plymouth.funderPartnership for Research In Marine Renewable Energy (PRIMaRE)::EPSRC


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV