Show simple item record

dc.contributor.authorThompson, RCen

© Springer International Publishing Switzerland 2016. Microplastics are pieces of plastic debris <5 mm in diameter. They enter the environment from a variety of sources including the direct input of small pieces such as exfoliating beads used in cosmetics and as a consequence of the fragmentation of larger items of debris. A range of common polymers, including polyethylene, polypropylene, polystyrene, and polyvinyl chloride, are present in the environment as microplastic particles. Microplastics are widely distributed in marine and freshwater habitats. They have been reported on shorelines from the poles to the equator; they are present at the sea surface and have accumulated in ocean systems far from land. Microplastics are also present in substantial quantities on the seabed. A wide range of organisms including birds, fish, and invertebrates are known to ingest microplastics and for some species it is clear that a substantial proportion of the population have microplastic in their digestive tract. The extent to which this might have harmful effects is not clear; however, the widespread encounter rate indicates that substantial quantities of microplastic may be distributed within living organisms themselves as well as in the habitats in which they live. Our understanding about the long-term fate of microplastics is relatively limited. Some habitats such as the deep sea may be an ultimate sink for the accumulation of plastic debris at sea; indeed, some recent evidence indicates quantities in the deep sea can be greater than at the sea surface. It has also been suggested that microplastics might be susceptible to biodegradation by microorganisms; however, this is yet to be established and the prevailing view is that even if emissions of debris to the environment are substantially reduced, the abundance of microplastics will increase over the next few decades. However, it is also clear that the benefits which plastics bring to society can be realized without the need for emissions of end-of-life plastics to the ocean. To some extent the accumulation of microplastic debris in the environment is a symptom of an outdated business model. There are solutions at hand and many synergistic benefits can be achieved in terms of both waste reduction and sustainable use of resources by moving toward a circular economy.

dc.format.extent121 - 133en
dc.relation.ispartofHandbook of Environmental Chemistryen
dc.titleSources, Distribution, and Fate of Microscopic Plastics in Marine Environmentsen
dc.typeBook Chapter
plymouth.organisational-group/Plymouth/00 Groups by role
plymouth.organisational-group/Plymouth/00 Groups by role/Academics
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Biological and Marine Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
dc.rights.embargoperiodNot knownen
rioxxterms.typeBook chapteren

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV