Show simple item record

dc.contributor.authorAllsop, T
dc.contributor.authorNeal, R
dc.contributor.authorKundrat, V
dc.contributor.authorWang, C
dc.contributor.authorMou, C
dc.contributor.authorCulverhouse, Phil
dc.contributor.authorAnia-Castanon, JD
dc.contributor.authorKalli, K
dc.contributor.authorWebb, DJ
dc.date.accessioned2019-03-28T13:57:20Z
dc.date.available2019-03-28T13:57:20Z
dc.date.issued2019-01-15
dc.identifier.issn0146-9592
dc.identifier.issn1539-4794
dc.identifier.urihttp://hdl.handle.net/10026.1/13570
dc.description.abstract

We investigate a nano-patterning process which creates reproducible periodic surface topological features that range in size from ∼100  μm to ∼20  μm . Specifically, we have fabricated multi-layered thin films consisting of germanium/silicon strata on a planar substrate, with each layer having nanometers thickness. The material processing exploits focused 244 nm ultra-violet laser light and an opto-mechanical setup typically applied to the inscription of fiber gratings, and is based upon the well-known material compaction interaction of ultra-violet light with germanium oxides. We show this process can be extended to create arrays of metal nano-antennas by adding a metal overlay to the thin film. This results in arrays with dimensions that span nanometer- to centimeter-length scales. Also, each nano-antenna consists of “nano-blocks.” Experimental data are presented that show the UV irradiance dosage used to create these metal nanostructures on D-shaped optical fibers has a direct relationship to their transmission spectral characteristics as plasmonic devices.

dc.format.extent195-195
dc.format.mediumPrint
dc.languageen
dc.language.isoen
dc.publisherOptical Society of America
dc.subjectBioengineering
dc.subjectNanotechnology
dc.titleLow-dimensional nano-patterned surface fabricated by direct-write UV-chemically induced geometric inscription technique
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000455620100004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue2
plymouth.volume44
plymouth.publication-statusPublished
plymouth.journalOptics Letters
dc.identifier.doi10.1364/ol.44.000195
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
dc.publisher.placeUnited States
dcterms.dateAccepted2018-11-30
dc.rights.embargodate2020-1-15
dc.identifier.eissn1539-4794
dc.rights.embargoperiodNot known
rioxxterms.funderEPSRC
rioxxterms.identifier.projectGrating and waveguide plasmonic sensors
rioxxterms.versionofrecord10.1364/ol.44.000195
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2019-01-15
rioxxterms.typeJournal Article/Review
plymouth.funderGrating and waveguide plasmonic sensors::EPSRC


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV