Show simple item record

dc.contributor.authorMcCarroll, Jak
dc.contributor.authorBrander, RW
dc.contributor.authorScott, Tim
dc.contributor.authorCastelle, B
dc.date.accessioned2018-08-13T15:26:15Z
dc.date.issued2018-07-11
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttp://hdl.handle.net/10026.1/12125
dc.description.abstract

<jats:title>Abstract</jats:title><jats:p>A multibeach Lagrangian data set was used to determine bathymetric controls on flow variability within the surfzone. Seven microtidal flow regimes were examined, six containing rip channels, under moderate shore normal waves. Three selected zones exemplified varying bathymetric control: (i) a alongshore uniform zone; (ii) a shallow rip channel at an oblique angle to shore normal; and (iii) a deep, shore‐normal rip channel. Bathymetric variables included alongshore nonuniformity (<jats:styled-content><jats:italic>φ</jats:italic></jats:styled-content>) and channel angle relative to shore normal (<jats:styled-content><jats:italic>α</jats:italic></jats:styled-content>). Low‐frequency flow (0.01 Hz) was described by velocity (<jats:styled-content><jats:italic>U</jats:italic></jats:styled-content>), velocity standard deviation (<jats:styled-content><jats:italic>σ</jats:italic><jats:sub><jats:italic>U</jats:italic></jats:sub></jats:styled-content>), angular deviation (<jats:styled-content><jats:italic>σ</jats:italic><jats:sub><jats:italic>θ</jats:italic></jats:sub></jats:styled-content>), and bias in direction of eddy rotation (<jats:styled-content><jats:italic>ζ</jats:italic><jats:sub>bias</jats:sub></jats:styled-content>). Observations of the exemplar zones indicated the following: (i) near‐zero mean flow with transient eddies within the alongshore uniform zone; (ii) low mean flow with high <jats:styled-content><jats:italic>ζ</jats:italic><jats:sub>bias</jats:sub></jats:styled-content> within the oblique channel; and (iii) strong mean flow with low <jats:styled-content><jats:italic>ζ</jats:italic><jats:sub>bias</jats:sub></jats:styled-content> in the deep channel. Bathymetry and flow variables were spatially averaged and linearly correlated, scaling for wave forcing. Normalized flow variables were found to be interdependent and were correlated with bathymetric variability, with <jats:styled-content>[<jats:italic>U</jats:italic> ∝ <jats:italic>φ</jats:italic>]</jats:styled-content>, <jats:styled-content>[(<jats:italic>U</jats:italic>/<jats:italic>σ</jats:italic><jats:sub><jats:italic>U</jats:italic></jats:sub>) ∝ <jats:italic>φ</jats:italic>]</jats:styled-content>, and <jats:styled-content>[<jats:italic>σ</jats:italic><jats:sub><jats:italic>θ</jats:italic></jats:sub> ∝  − <jats:italic>φ</jats:italic>]</jats:styled-content>, all with (<jats:styled-content><jats:italic>R</jats:italic><jats:sup>2</jats:sup> ≥ 0.8</jats:styled-content>). A correlation was determined between <jats:styled-content><jats:italic>α</jats:italic></jats:styled-content> and <jats:styled-content><jats:italic>ζ</jats:italic><jats:sub>bias</jats:sub></jats:styled-content> (<jats:styled-content><jats:italic>R</jats:italic><jats:sup>2</jats:sup> ≥ 0.7</jats:styled-content>, increasing as zone width is decreased), with peak <jats:styled-content><jats:italic>ζ</jats:italic><jats:sub>bias</jats:sub></jats:styled-content> within oblique channels. Based on these results, a conceptual model is introduced to predict flow behavior for known bathymetry. Surfzone currents were found to span a dynamic continuum from transient eddies on alongshore uniform bathymetry, to channelized rip currents, forced by bathymetric three‐dimensionality and mediated by channel geometry.</jats:p>

dc.format.extent1295-1316
dc.languageen
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc.
dc.subjectrip currents
dc.subjecttransient surfzone eddies
dc.subjectLagrangian drifters
dc.subjectfield measurements
dc.titleBathymetric Controls on Rotational Surfzone Currents
dc.typejournal-article
dc.typeJournal Article
plymouth.author-urlhttps://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000438207500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=11bb513d99f797142bcfeffcc58ea008
plymouth.issue6
plymouth.volume123
plymouth.publication-statusPublished
plymouth.journalJournal of Geophysical Research. Earth Surface
dc.identifier.doi10.1029/2017JF004491
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dcterms.dateAccepted2018-04-10
dc.rights.embargodate9999-12-31
dc.identifier.eissn2169-9011
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1029/2017JF004491
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-07-11
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV