Show simple item record

dc.contributor.authorZondervan, Jesse
dc.contributor.authorStokes, M
dc.contributor.authorMather, Anne
dc.contributor.authorBoulton, Sarah
dc.date.accessioned2018-08-11T18:18:16Z
dc.date.available2018-08-11T18:18:16Z
dc.date.issued2017-11
dc.identifier.urihttp://hdl.handle.net/10026.1/12008
dc.description.abstract

The Atlas mountains in Morocco are a natural laboratory at the junction between the Atlantic Ocean (passive margin), the Mediterranean (subduction) and the African Craton. Here, interactions between the mantle and lithosphere, crustal compression and uplift have been recorded in river terraces, alluvial fans, drainage patterns, river long profiles, and in wedge-top & foreland sediments. Limited work on terraces in one of the catchments crossing the south Atlas thrust front has shown rates of incision are low and have been sustained since the Pleistocene. Dating of terraces using Optically Stimulated Luminescence, together with field sedimentology, links the formation of terraces in the Dades River to 100 ka climate cycles. Studies of tributary fans and fan sediments in terraces suggest coupling of hillslopes, tributaries and trunk streams vary across glacial-interglacial cycles and is geologically controlled. River long profiles extracted across the southern Atlas Mountains contain knickzones (areas of increased steepness), resulting from tectonically driven uplift. We will use newly acquired high resolution DEM data together with field mapping and Optically Stimulated Luminescence dating to constrain river terrace formation in High Atlas catchments draining into the Ouarzazate foreland basin. These data will be used to constrain further, the regional tectonic and climatic controls on river terrace formation. Integrating the terrace records with the other fluvial archives will enable challenging questions on tectonic surface processes, source-to-sink sedimentology and intra-plate tectonics to be tackled.

dc.language.isoen
dc.titleFluvial archives of NW African climate and tectonic evolution, Atlas Mountains, central Morocco
dc.typepresentation
plymouth.author-urlhttps://www.researchgate.net/publication/320990153_Fluvial_archives_of_NW_African_climate_and_tectonic_evolution_Atlas_Mountains_central_Morocco
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA07 Earth Systems and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA14 Geography and Environmental Studies
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeEarth Sciences Research Conference, Plymouth University
dc.rights.embargoperiodNot known
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeOther


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV