Show simple item record

dc.contributor.authorLee, David John
dc.contributor.otherFaculty of Science and Technologyen_US
dc.identifierNot availableen_US

Theoretical and experimental investigations into the compressive buckling behaviour of unidirectional CFRP thin- walled channel sections subject to built-in end conditions are described. Local and overall modes of instability are considered and the effects of transverse shear on both modes are discussed. Particular emphasis is given to the development of local instability theory for orthotropic materials and the basis for design charts for a range of thin-walled orthotropic sections is included. These analytical developments are accompanied by an investigation of numerical methods in which a finite difference technique is applied to single orthotropic plates and a finite element programme is used with multi-plate sections. Good correlation is observed between analytically and numerically derived buckling loads. Buckling analyses are confined to classical linearised theories and the sensitivities to eccentric loading, applied end moments, and imperfect end restraints are demonstrated. The pultrusion process for manufacture of continuous unidirectional CFRP thin-walled sections is described and suggestions for its development to multidirectional composites are given. Test, methods for the measurement of the principal mechanical properties of unidirectional CFRP from, in some cases, small specimens are detailed. Measured properties are shown to correlate with fibre volume fractions obtained from areal analyses of polished sections. The design of a strain, gauge bridge amplifier and data logging system utilised during column testing is included. The Southwell method is shown to be applicable to flexural and torsional-flexural buckling modes and in general measured buckling loads fall short of theory by 50%. Local buckling loads are indistinct although buckled forms correspond to theoretical predictions and little post buckling strength is observed. A theoretically derived buckling chart for unidirectional CFRP channel sections is presented and a minimum design safety factor of 2 is recommended.

dc.description.sponsorshipCamborne School of Minesen_US
dc.publisherUniversity of Plymouthen_US
plymouth.versionFull versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV