Show simple item record

dc.contributor.authorFyfe, RMen
dc.contributor.authorOmbashi, Hen
dc.contributor.authorDavies, HJen
dc.contributor.authorHead, Ken

© 2017 International Association for Vegetation Science. Aims: To apply the Landscape Reconstruction Algorithm (LRA) to pollen count data from multiple sites to estimate local vegetation abundance and compare with charcoal-derived records of burning. Location: Exmoor, southwest England, UK. Methods: Pollen count data from 16 sites were transformed to estimates of distance-weighted vegetation abundance using the LRA (REVEALS and LOVE models), correcting for bias in pollen production and dispersal. Charcoal concentration data from six sites were normalized using Box-Cox transformation to produce z-scores. Moving-window correlation was undertaken to compare pollen percentage values for key taxa (Calluna, Poaceae) and localized burning. Estimates of distance-vegetation abundance (LRA output) and time-averaged charcoal z-scores were compared to assess the role of burning as a driver for upland vegetation cover. Results: Comparison of pollen percentage and normalized charcoal z-scores show little correlation between vegetation cover and burning. Estimates of distance-weighted vegetation abundance and normalized charcoal data show relationships between vegetation change and burning at four of the six sites. The relationships are site-specific: three sites suggest burning promoted grass-dominated vegetation, at one site burning promoted heather-dominated vegetation, and in two sites there is no apparent relationship. Conclusions: The patterning of vegetation within uplands is a crucial part of ecosystem service delivery, and contemporary and future management benefits from understanding of 'long-term' development, i.e. patterns over millennia. The correction of biases within pollen production and dispersal to produce local vegetation estimates has demonstrated spatial heterogeneity in vegetation cover on Exmoor that is not otherwise evident in the pollen percentage data (which retain a strong influence of the regional vegetation cover). The relationship between LRA-derived vegetation cover and burning is not apparent in comparisons between pollen percentage data and charcoal records. This implies that studies that use pollen proportional data alone can misrepresent the relationship between vegetation cover and fire. This study demonstrates that fire has been an important part of the development of this cultural landscape.

dc.format.extent393 - 403en
dc.titleQuantified moorland vegetation and assessment of the role of burning over the past five millenniaen
dc.typeJournal Article
plymouth.journalJournal of Vegetation Scienceen
plymouth.organisational-group/Plymouth/Admin Group - REF
plymouth.organisational-group/Plymouth/Admin Group - REF/REF Admin Group - FoSE
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering
plymouth.organisational-group/Plymouth/Faculty of Science and Engineering/School of Geography, Earth and Environmental Sciences
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA
plymouth.organisational-group/Plymouth/REF 2021 Researchers by UoA/UoA14 Geography and Environmental Studies
plymouth.organisational-group/Plymouth/Research Groups
plymouth.organisational-group/Plymouth/Research Groups/Marine Institute
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.rights.embargoperiodNot knownen
rioxxterms.typeJournal Article/Reviewen

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV