Show simple item record

dc.contributor.supervisorRamsay, Paul M.
dc.contributor.authorGarcía-Meneses, Paola M.
dc.contributor.otherFaculty of Science and Technologyen_US

Important ecological processes happen over long periods of time and at the landscape scale. Effective conservation of biodiversity and management of natural resources and ecosystem services requires an understanding of these processes. Unfortunately, it is often impractical to conduct appropriate long-term, landscape-scale studies. Modelling offers an alternative approach. Complete ecosystems are too complex to model practically, but simulations of simplified systems provide useful insights of practical value. LandBaSE-P is an individual-based model for Puya hamata that provides information about impacts of fire on ecological processes in the páramo of the Reserva Ecológica El Ángel, Ecuador. Puya hamata is a flagship plant affected by fires and plays a key role in a number of ecological processes. This research found Puya hamata germinated much more frequently after fires, can form large aggregations of single recruitment cohorts, suffers very low mortality (with and without fires) once established, and lives up to 28 years. The spatial aggregation of Puya hamata plants reduced effective reproductive output, consistent with the theory that pollinator behaviour around large groups of Puya plants reduces cross-pollination, leading to inbreeding depression and poorer seed viability and germination. Puya hamata’s population structure can be an indicator of recent fire regime. LandBaSE-P simulations showed that population size is not affected by rare, long-distance seed dispersal. However, in the simulations of páramo grasslands, Puya relative germination is maintained in high numbers by burning. Puya hamata has an important role in ecology and biodiversity. The model LandBaSE-P is a complementary tool for conservation and sustainable land management. This thesis shows how fieldwork combined with laboratory studies and modelling, can provide a good understanding of complex dynamics of real-world populations, and generate ideas for management and future research.

dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACyT)en_US
dc.publisherUniversity of Plymouthen_US
dc.subjectSemelparous rosette, High Andes, fires, population modelling, Puya hamataen_US
dc.titleLandscape-scale population dynamics: field observations and modelling of Puya hamata, a flagship plant from the Andesen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
@mire NV