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ABSTRACT: Climate change and the associated environmental temperature fluctuations are 16 

contributing to increases in the frequency and severity of disease outbreaks in both wild and 17 

farmed aquatic species. This has a significant impact on biodiversity and also puts global 18 

food production systems, such as aquaculture, at risk. Most infections are the result of 19 

complex interactions between multiple pathogens, and understanding these interactions and 20 

their co-evolutionary mechanisms is crucial for developing effective diagnosis and control 21 

strategies. In this review, we discuss current knowledge on bacteria–bacteria, virus–virus, and 22 

bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of 23 

global warming. We also propose a framework and different novel methods (e.g. advanced 24 

molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify 25 

overlooked co-infections, (2) gain an understanding of the co-infection dynamics and 26 

mechanisms by knowing species interactions, and (3) facilitate the development multi-27 

pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks 28 

are forecasted to increase both due to the intensification of practices to meet the protein 29 



demand of the increasing global population and as a result of global warming, understanding 30 

and treating co-infections in aquatic species has important implications for global food 31 

security and the economy. 32 

KEY WORDS:  Host · Temperature · Climate change · Treatments · Fish · Shellfish · 33 

Disease outbreaks 34 

1.  INTRODUCTION 35 

Both macro- and micro-parasites (or pathogens) are common in natural ecological 36 

communities, and most hosts are usually infected by multiple pathogenic species at the same 37 

time, a phenomenon known as co-infection (Kinnula et al. 2017). During co-infections, 38 

multiple pathogens are active in the same host, leading to a complex network of interactions. 39 

These interactions have the potential to alter disease dynamics, modify pathogen virulence, 40 

and influence the host’s immune system. 41 

Pathogen interactions can range from mutualistic, whereby pathogens mutually 42 

benefit each other resulting in synergetic interactions, to competitive (pathogenic species 43 

competing for resources and displaying negative effects on each other, also known as 44 

antagonistic interactions) (Mideo 2009, Telfer et al. 2010, Kotob et al. 2016). Synergistic co-45 

infections can be particularly detrimental to the host, often resulting in high mortality rates. 46 

For instance, one pathogen can facilitate the invasion of another, potentially enhancing its 47 

virulence and even transferring virulence factors (de Lorgeril et al. 2018). Certain pathogens, 48 

such as bacteria, can exhibit cooperative behaviors (organisms working or acting together for 49 

common or mutual benefits); for example, towards the production of ‘public goods’ that 50 

assist in the invasion of other pathogens (Griffin et al. 2004). Additionally, the suppression or 51 

imbalance of the host immune system (immunosuppression) may facilitate the infection of 52 

secondary pathogens (Molina & Vilchez 2014, de Lorgeril et al. 2018). In some antagonistic 53 

interactions, the competition for host resources favors the selection and proliferation of the 54 

fittest pathogen, sometimes leading to proliferation of the most virulent pathogens (Mideo 55 

2009, M. Sofonea et al. preprint doi/10.1101/258004). These interactions can, therefore, lead 56 

to altered pathogen composition, abundance, and interaction dynamics (i.e. modified host and 57 

pathogen interactions and pathogenicity) that differ from those observed in single infections 58 

(Read & Taylor 2001, Mideo 2009, Kotob et al. 2016). 59 

Co-infections of aquatic animals by multiple pathogens are common, yet their 60 

investigation is often challenging due to the continual onslaught of existing and new 61 



infectious agents (Lafferty et al. 2015, Flegel 2020). Disease outbreaks pose a significant 62 

problem in global aquaculture, with most aquatic diseases typically attributed to single 63 

etiological agents, such as specific bacteria or viruses (Kotob et al. 2016, de Lorgeril et al. 64 

2018, English & Lima 2020). However, recent research is shedding light on the importance 65 

of diagnosing and understanding co-infections in aquatic animals to gain a better 66 

understanding of disease outbreaks (Petton et al. 2021, Wise et al. 2021). For instance, the 67 

increased juvenile Pacific oyster mortalities observed since 2008 have been linked to a 68 

polymicrobial infection (de Lorgeril et al. 2018, Petton et al. 2021). Oysters are first infected 69 

by ostreid herpesvirus infection (OsHV-1 Var), which immunocompromises oysters by 70 

altering hemocyte physiology, facilitating secondary colonization by opportunistic bacterial 71 

pathogens, and resulting in oyster death (de Lorgeril et al. 2018). There is, therefore, an 72 

urgent need for a deeper understanding of how microorganisms interact to cause pathogenesis 73 

in the host, particularly considering how co-infection mechanisms may be exacerbated or 74 

modified by changing environmental conditions. This knowledge is crucial for disease 75 

control and prevention, effective aquaculture management, and the conservation of aquatic 76 

animal populations. 77 

Seawater temperature increase is one of the main effects of climate change (Jyväsjärvi 78 

et al. 2015, Barbarossa et al. 2021) and can have profound effects on the biochemical, 79 

physiological, and behavioral processes of many organisms, including aquatic ectotherms 80 

(Volkoff & Rønnestad 2020, Deldicq et al. 2021). Warmer temperatures have been associated 81 

with decreased fitness, increased stress levels, and larki-depression in aquatic species, 82 

rendering them more susceptible to infections (Guo & Dixon 2021). Research has indicated 83 

that elevated temperatures can lead to increased disease outbreaks and fatalities among 84 

aquatic organisms, as higher temperatures can enhance the metabolism and, at times, the 85 

virulence of microorganisms (Karvonen et al. 2010, Kimes et al. 2012, Leung & Bates 2013, 86 

Reverter et al. 2020). The impacts of temperature increase on both the host’s fitness and 87 

various pathogens have the potential to influence co-infection mechanisms and dynamics, 88 

although this area remains poorly understood. This review examines the implications of 89 

climate warming on bacterial and viral co-infections in aquaculture, including co-90 

evolutionary dynamics, diagnosis methods, treatment options, and strategies for more 91 

sustainable disease management under climate change. 92 



2.  COMMON BACTERIAL AND VIRAL CO-INFECTIONS IN 93 

AQUACULTURE 94 

2.1.  Bacterial co-infections 95 

Both natural and experimental bacterial co-infections have been reported in numerous 96 

aquatic species and have sometimes been suggested to be related to elevated water 97 

temperatures ( ) (Karlsen et al. 2014, Hjerde et al. 2015, Wise et al. 2021). For 98 

example, in striped mullet Mugil cephalus, co-infection with Aeromonas hydrophila and 99 

Vibrio parahaemolyticus was confirmed through biochemical tests, genome sequencing, and 100 

phylogenetic analysis. During the summer months, when poor water quality and elevated 101 

temperatures were observed at the fish farm, high mortality rates ranging from 75–85% were 102 

linked to these co-infections (El-Son et al. 2021). Similarly, striped catfish Pangasianodon 103 

hypophthalmus experience higher mortality rates (95%) when co-infected with Edwarsiella 104 

larkiad and A. hydrophila compared to single infections (80 and 10%, respectively) 105 

(Crumlish et al. 2010). Co-infected P. hypophthalmus with E. larkiad and Flavobacterium 106 

columnare also displayed higher mortalities (86.7–100%) than in single infections (80 and 107 

3.3%, respectively) (Dong et al. 2015). These findings demonstrate that many bacterial co-108 

infections can lead to significantly higher host mortalities compared to single-pathogen 109 

infections (Wise et al. 2021). However, antagonistic bacterial interactions resulting in lower 110 

host mortality have also been described, highlighting the complex nature of bacterial co-111 

infections (Karlsen et al. 2014, Hjerde et al. 2015). Karlsen et al. (2014) observed that 112 

Atlantic salmon Salmo salar co-infected first with Aliivibrio wodanis and consequently by 113 

Moritella viscosa displayed lower mortalities than fish only infected by M. viscosa. They 114 

hypothesized that both bacteria may be competing for the same niche and that A. Wodanis 115 

may be able to outcompete M. viscosa growth by secreting toxins. Although both M. viscosa 116 

and A. wodanis are known etiological agents of winter ulcer disease, Karlsen et al. (2014) 117 

showed that co-infection prolonged the disease progression and pathogenesis. Low 118 

temperatures are a key factor of M. viscosa proliferation; however, the effect of temperature 119 

(i.e. increases or decreases) on the co-infection dynamics and the consequent effects on the 120 

hosts are not yet well elucidated. It is noteworthy that many bacterial pathogens can persist in 121 

close contact (e.g. surrounding environment, mucosa) of the host tissues for extended periods 122 

without causing harm. Therefore, sometimes opportunistic bacterial infections occur as 123 

secondary agents, with viruses or other pathogens (i.e. macro-parasites) acting as the primary 124 



pathogens responsible for invading aquatic animals and allowing bacteria to enter via the 125 

creation of physical injuries or host immunosuppression (Barbosa Solomieu et al. 2015, de 126 

Lorgeril et al. 2018, Pękala-Safińska 2018, Nicholson et al. 2020, Ramírez-Paredes et al. 127 

2021). 128 

Bacterial co-infections are very common in aquatic farmed animals (Wise et al. 129 

2021); however, as illustrated in the examples above, characterizing the different co-infection 130 

agents and understanding their interaction dynamics, including their different trajectories 131 

under different environmental conditions such as elevated temperature, is required to 132 

understand their effects on hosts and to allow design of effective treatment strategies. 133 

2.2.  Viral co-infections 134 

Viral co-infections in aquatic animals are a poorly studied area of research; however, 135 

as with bacterial co-infections, evidence shows that viral co-infections can both lower and 136 

increase host mortality, highlighting the need to understand these co-infections on a case-to-137 

case basis. In vitro experiments using monolayers of BF2 cells (a fibroblast-like cell that was 138 

isolated from the caudal trunk of 1 yr old bluegill, Lepomis macrochirus) pre-treated with 139 

supernatants of infected brown trout Salmo trutta revealed that infectious pancreatic necrosis 140 

virus (IPNV) infection exhibited antiviral activity against infectious hematopoietic necrosis 141 

virus (IHNV) due to the presence of interferon-like proteins (Saint-Jean & Pérez-Prieto 142 

2007). In vivo, co-infection of S. trutta with equal infectious titers of IPNV and IHNV 143 

resulted in lower mortality (40%) compared to infection with either virus alone (65% for 144 

IPNV and 70–75% for IHNV) (Saint-Jean & Pérez-Prieto 2007). This protective effect may 145 

be attributed to the induction of an Mx gene, a marker of GTPases, in the kidney, liver, and 146 

spleen 3 d post-stimulation, which inhibits virus replication mediated by type I interferons 147 

(IFN-I) (Saint-Jean & Pérez-Prieto 2007). The impact of IPNV on the replication of IHNV 148 

and viral hemorrhagic septicemia virus (VHSV) was also evaluated in BF2 cells derived from 149 

bluegill L. macrochirus. The co-infection of IPNV and IHNV in these cells also resulted in a 150 

reduction in IHNV infectivity and the expression of IHNV viral antigens but had no effect on 151 

VHSV replication (Rodriguez et al. 2005). Similarly, Pakingking et al. (2004) examined the 152 

effects of non-lethal aquabirnavirus (ABV)–VHSV co-infection in vitro and in vivo in 153 

Japanese flounder Paralichthys olivaceus. In vitro assays using hirame natural embryo cells 154 

demonstrated that fish serum from ABV-infected cells exhibited antiviral activity against 155 

VHSV. In vivo results suggested that primary infection with a less virulent strain of ABV 156 



decreased VHSV virulence through the induction of IFNs (Pakingking et al. 2004). 157 

Altogether, these studies show that viral co-infections in aquatic animals often result in viral 158 

interference, with one virus affecting the replication of another virus through competitive 159 

inhibition. However, in some cases, co-infecting viruses can co-exist (also known as 160 

accommodation) and can modify the virulence and, hence, disease severity (Okon et al. 161 

2023). 162 

For example, in shrimp Litopenaeus vannamei, viral co-infection with white spot 163 

syndrome virus (WSSV) and infectious hypodermal and hematopoietic necrosis virus 164 

(IHHNV) resulted in 100% mortality, which was linked to the suppression of immune 165 

parameters such as phenoloxidase activity, superoxide dismutase, hemocyte counts, and 166 

decreased gene expression of prophenoloxidase and peroxinectin (Yeh et al. 2009). Similarly, 167 

mass mortalities of giant tiger prawn Penaeus monodon post-larvae were observed when 168 

infected with multiple viruses including monodon baculovirus (MVB), hepatopancreatic 169 

parvovirus (HPV), and WSSV (Manivannan et al. 2002). However, in some cases, shrimp 170 

naturally infected with multiple viruses (HPV, MVB, IHHNV, and WSSV) showed no 171 

mortalities but were reduced in size (Flegel et al. 2004). The tolerance of viral co-infections 172 

in shrimp, whereby they can coexist with viruses without exhibiting signs of disease, is still 173 

poorly understood. (Flegel 2009, 2020). Bonnichon et al. (2006) suggested that persistent 174 

viral infections like IHHNV may protect against more virulent viruses like WSSV in L. 175 

vannamei. The complexity of predicting the effects of co-infections on virulence and the 176 

selection of favored strains arises from the interplay of host and environmental factors on 177 

microorganism fitness as well as the potential role of co-evolutionary dynamics (Alizon & 178 

van Baalen 2008, Alizon et al. 2013). 179 

Although some viral co-infections in reared aquatic animals have been characterized 180 

and some molecular mechanisms that may lead to synergetic or antagonist viral interactions 181 

have been described, the impact of exogenous parameters such as water temperature on viral 182 

co-infections remains unexplored. Many viral diseases in aquatic animals are tightly linked to 183 

increases in water temperature (e.g. cyprinid herpesvirus 3, CyHV-3; koi herpesvirus disease, 184 

KHV; and OsHV) (Bergmann & Kempter 2011, de Katnzow et al. 2016), which may mean 185 

that increases in temperature could lead to increases in the frequency and outcome of viral 186 

co-infections, but this topic requires further research. 187 

2.3.  Bacterial and viral co-infections and other co-infections 188 



There are limited studies on bacterial and viral co-infections in fish and shellfish, but 189 

the available evidence suggests that co-infections with multiple pathogens often result in 190 

higher mortalities (i.e. virulence) compared to infections with a single pathogen. For instance, 191 

in laboratory experiments, tilapia (Oreochormis niloticus and Oreochromis spp.) infected 192 

with both tilapia lake virus (TiLV) and A. hydrophila had a mortality rate of 93%. By 193 

contrast, experimental infection with TiLV alone resulted in 34% mortality, and A. 194 

hydrophila alone caused 6.7% mortality (Nicholson et al. 2020). Co-infection between 195 

infectious spleen and kidney necrosis virus (ISKNV) and Streptococcus agalactiae has also 196 

been associated with high mortalities (>50%) in tilapia (Assis et al. 2017, Ramírez-Paredes et 197 

al. 2021). In Chinese perch Siniperca chuatsi culture ponds, co-infection with A. hydrophila 198 

and ISKNV was detected, and the study of interaction mechanisms revealed complex mixed 199 

antagonistic and synergistic effects. These effects involved the elevated expression of IRF1, 200 

Mx, Viperin, hepcidin, TNFα, and IL-1β mRNAs genes. Simultaneous inoculation with both 201 

pathogens resulted in increased host mortality (Liu et al. 2020). Accelerated mortalities have 202 

also been observed in whiteleg shrimp L. vannamei infected with WSSV, V. 203 

parahaemolyticus, and V. anguillarum. Particularly, when tripartite co-infection experiments 204 

were conducted, genes involved in the shrimp’s innate immunity, such as prophenoloxidase 1 205 

and 2 (ProPO), were down-regulated, while genes like LvMyD88 (myeloid differentiation 206 

factor 88, involved in the toll signaling activation pathway) and Lvakt (gene encoding AKT 207 

proteins and key component of the PI3K–AKT pathway, involved intracellular signaling 208 

during virus invasion) were up-regulated, suggesting that LvMyD88 and Lvakt may play a 209 

role in the shrimp immune response against viruses (Jang et al. 2014, Zhang et al. 2016). 210 

In crayfish Procambarus larkia, experimental co-infection with WSSV and 211 

Aeromonas veronii also resulted in higher mortalities (100%) compared to A. veronii 212 

infection alone (70%) or WSSV infection alone (83.3%) (Yuan et al. 2021). Additionally, 213 

infection of Pacific oyster juveniles Crassostrea gigas with OsHV-1 Var leads to an 214 

immune-compromised state that facilitates opportunistic bacterial colonization and 215 

pathogenicity, resulting in bacteremia and death (de Lorgeril et al. 2018). These findings 216 

highlight the detrimental impact of bacterial and viral co-infections on the health of fish and 217 

shellfish. However, in most cases, the mechanisms by which this is achieved (i.e. 218 

microorganism cooperation, sequential immunosuppression, etc.) are as yet extremely poorly 219 

understood. 220 



In contrast to the previously mentioned examples, co-infection of L. vannamei with 221 

WSSV and V. parahaemolyticus resulted in lower mortality (83%) compared to WSSV 222 

infection alone (mortality of 97%). This suggests a potential competition between the 223 

pathogens, with V. parahaemolyticus inhibiting the replication of WSSV. However, immune 224 

gene expression in the gills of co-infected shrimp was higher than in the WSSV-infected 225 

group, indicating that the enhanced immune responses triggered by V. parahaemolyticus may 226 

contribute to the reduction in WSSV infection success (Pang et al. 2019). 227 

Interestingly, Louhi et al. (2015) found that co-infection virulence of the bacterium F. 228 

columnare and the fluke Diplostomum pseudospathaceum in rainbow trout Oncorhynchus 229 

mykiss was not only associated with the identity of the co-infecting partners (i.e. species) but 230 

with their genotypes, which interacted differently and resulted in different virulence. 231 

Although most co-infections resulted in increased host mortalities, some reduced the fluke 232 

infection rate, suggesting that co-infections can drive the pathogen’s fitness phenotypic 233 

variation. 234 

Overall, the available literature highlights the complexity of co-infections, and that 235 

virulence evolution is probably largely shaped by the ecological and evolutionary interactions 236 

between co-infecting pathogens. 237 

3.  CO-EVOLUTIONARY IMPLICATIONS OF AQUACULTURE 238 

DISEASES UNDER CLIMATE WARMING 239 

Co-evolutionary implications arise when 2 or more populations engage in long-term 240 

interactions, leading to reciprocal evolutionary change. This concept is often referred to as 241 

co-evolution. The Red Queen Hypothesis, proposed by Van Valen (1973), suggests that 242 

interacting species are in a continuous cycle of adaptation and evolution in response to each 243 

other. This idea finds strong support in host–parasite systems, whereby the host evolves 244 

mechanisms to evade the parasite, and the parasite counter-adapts to exploit the host (Kaltz & 245 

Shykoff 1998). In co-evolutionary dynamics, 2 main patterns can emerge: arms-race dynamic 246 

(ARD) and fluctuating selection dynamics (FSD). In ARD, both species accumulate adaptive 247 

mutations in directional evolution, constantly trying to outpace each other’s adaptations. On 248 

the other hand, FSD promotes genetic variance and negative frequency-dependent selection, 249 

meaning that the fitness of a particular trait depends on its frequency in the population 250 

(Martiny et al. 2014, Strotz et al. 2018). In the context of pathogen–host interactions in 251 

aquaculture settings, understanding co-evolutionary implications is crucial for managing 252 



disease outbreaks. By studying these dynamics, we can gain insights into the mechanisms 253 

underlying the evolution of virulence in pathogens and the evolution of host resistance. 254 

Additionally, co-evolutionary dynamics can shed light on the emergence of new strains or 255 

variants that can overcome existing host defenses, leading to disease outbreaks. 256 

It is worth noting that co-evolutionary processes are complex and influenced by 257 

various factors, including genetic diversity, population size, ecological interactions, and 258 

environmental conditions. Therefore, studying co-evolution in pathogen–host systems 259 

requires a multidisciplinary approach that combines genetics, ecology, and evolutionary 260 

biology. 261 

By understanding the co-evolutionary dynamics between pathogens and hosts, we can 262 

develop more effective strategies for disease prevention and control in aquaculture, such as 263 

implementing selective breeding programs to enhance host resistance or using management 264 

practices that disrupt the arms race between pathogens and hosts. 265 

3.1.  Within-host mixed-genotype interactions and consequences for disease 266 

severity and development 267 

Studies have revealed that co-infection with multiple strains or genotypes of the same 268 

species is a common occurrence in bacterial and viral infections (Alizon & van Baalen 2008, 269 

Mideo 2009, Klafack et al. 2019, Leeks et al. 2019). Within-host mixed-genotype interactions 270 

can exhibit dynamics similar to those observed in co-infections between different species, 271 

involving competition for host resources and cooperation to evade the immune system 272 

(Alizon & van Baalen 2008, Mideo 2009). These interactions can lead to more severe 273 

infections and facilitate the development of antiviral resistance, enabling the pathogen to 274 

adapt to new hosts (Alizon & van Baalen 2008, Leeks et al. 2018). 275 

The presence of mixed genotypes within hosts plays a significant role in driving co-276 

evolutionary mechanisms, both in ARD and FSD (Strotz et al. 2018). Genetically distinct 277 

strains of parasites compete for host resources and exhibit cooperation or evasion strategies 278 

against the host’s immune system, and these interactions have implications for the evolution 279 

of parasite and disease severity (Mideo 2009, Martiny et al. 2014, M. Sofonea et al. preprint 280 

doi:10.1101/258004). 281 

These within-host mixed-genotype interactions contribute to the complexity of 282 

disease dynamics and have important implications for disease management. The presence of 283 



multiple strains or genotypes can enhance the overall virulence of the infection and pose 284 

challenges for treatment strategies. Additionally, the co-existence of different genotypes can 285 

lead to the emergence of novel variants through genetic recombination or reassortment, 286 

further complicating disease control efforts. 287 

A study by Delmotte et al. (2020) revealed that 2 distinct populations of OsHV-1 288 

Var infected different oyster families on French coasts (Atlantic and Mediterranean), 289 

indicating the presence of viral diversity and suggesting co-evolutionary interactions between 290 

the viruses and oyster populations. This highlights the importance of considering mixed-291 

genotype co-infections in understanding disease development and severity (Mideo 2009, 292 

Sofonea et al. 2017). Similar processes have been studied in fish, where asymptomatic carp 293 

Cyprinus carpio can be infected by multiple haplotypes of CyHV-3 (Avarre et al. 2012). 294 

In the case of CyHV-3, Gao et al. (2018) sequenced the genomes of 7 strains from 295 

different sites and observed 2 genetic clades (European and Asian), with evidence of inter-296 

linage recombination, suggesting the existence of a third, unidentified lineage. Interestingly, 297 

the strains with the highest cell fitness in vitro were those with the longest cell passage and 298 

lowest virulence. Serial passages experiment of CyHV-3 in brain cells also showed that in 299 

vitro evolution of the virus resulted in a mixture of haplotypes, and the passage 78 isolate was 300 

less virulent than the original isolate or passage 99, indicating the potential for attenuation of 301 

viral strains (Klafack et al. 2019). Attenuated viruses elicit an immune response in vertebrates 302 

and can spread through large populations (Marsden et al. 1996, Ronen et al. 2003). 303 

The presence of multiple viral genomes within cells or hosts can contribute to the 304 

maintenance of viral genetic diversity, and cooperation between different viral variants, such 305 

as immune evasion strategies, may play a role in virus–virus interactions and evolution 306 

(Sanjuán 2017). Viruses can generate de novo diversity rapidly, allowing them to adapt to 307 

new hosts and environments, especially in the presence of changing environmental conditions 308 

(Duffy et al. 2008). 309 

Studying cell-to-cell viral transfer and understanding its implications for virus–virus 310 

interactions are areas that are still not well understood but hold promise for future research. 311 

Although viral replication in cell cultures is crucial for studying mixed-genotype co-312 

infections, stable cell lines for invertebrate aquatic virology studies are limited (Vega-313 

Heredia & Giffard-Mena 2021). 314 



Understanding the dynamics of mixed-genotype co-infections and utilizing molecular 315 

tools offer valuable avenues for research. This approach would allow us to explore viral 316 

genetic diversity driven by mutation rates, which can contribute to managing drug resistance, 317 

immune escape, the emergence of new viruses, and the design of antiviral strategies in 318 

aquaculture co-infections. 319 

3.2.  Microbe–host horizontal gene transfer 320 

Horizontal gene transfer (HGT) is a significant mechanism for the acquisition of 321 

novel genes and metabolic functions facilitating co-evolution among organisms (Boucher et 322 

al. 2003). In the context of viral infections in shrimp, IHHNV can persist silently in infected 323 

shrimp without causing visible signs of disease (Tang & Lightner 2006, Flegel 2009, 2020, 324 

Saksmerprome et al. 2011, Goic & Saleh 2012). Some shrimp species such as Penaeus 325 

monodon, Litopenaeus vannamei, and L. stylirositris have been observed to be resistant to 326 

IHHNV at certain stages of their life cycle (Tang & Lightner 2006, Saksmerprome et al. 327 

2011, Flegel 2020). 328 

One explanation for this resistance is that endogenous viral elements (EVEs) have 329 

been autonomously incorporated into the host genome. These EVEs are derived from the 330 

viral mRNA and act as a defense mechanism in shrimps, utilizing the RNA interference 331 

(iRNA) mechanism (Flegel 2009, 2020). According to Flegel’s hypothesis, shrimp carrying 332 

protective EVEs would exhibit tolerance to lethal viruses and gain selective advantages over 333 

shrimp lacking such EVEs. This would result in positive selection for less virulent viral 334 

mutations and negative selection for more virulent ones. This could explain the high degree 335 

of tolerance to IHHNV observed in regions where both the virus and shrimp species are 336 

endemic (Flegel 2009, 2020). 337 

If the shrimp EVE hypothesis is proven to be protective against viral diseases, it could 338 

have practical applications in breeding programs. The insertion of EVEs into specific 339 

genomic positions, analogous to natural genetic modification in shrimp, could be used to 340 

produce specific pathogen-free (SPF) stocks of shrimp or other organisms that exhibit 341 

tolerance to multiple viruses (Flegel 2009, 2020). However, it is necessary to fully 342 

understand the mechanisms and implications of EVEs in providing viral resistance and their 343 

potential applications in breeding programs. 344 

3.3.  Microbe–microbe HGT 345 



The phylogenetic analysis of bacterial, archaeal, and eukaryotic genomes has 346 

provided evidence that a portion of genes in prokaryotic genomes have undergone horizontal 347 

transfer (Koonin et al. 2001). HGT is a well-known strategy employed by bacteria and other 348 

microbes to disseminate traits through the environment, enabling microbial cooperation and 349 

facilitating the acquisition of evolutionary novelties (Lee et al. 2022). HGT also plays a 350 

crucial role in driving microbial co-evolution and can even lead to the formation of hybrid 351 

organisms with enhanced fitness (Boto 2010, Power et al. 2021). 352 

Studies on antibiotic resistance gene (ARG) transfer in aquaculture systems have 353 

demonstrated the occurrence of HGT. For example, research on Vibrio parahaemolyticus 354 

isolates and related bacterial species from shrimp farms revealed horizontal transfer of 278 355 

genes between strains, with implications for antibiotic resistance, virulence, and metabolic 356 

fitness (Fu et al. 2022, Wang et al. 2022, Wanyan et al. 2023). HGT events were more 357 

frequent among closely related organisms or within habitats with similar environmental 358 

characteristics, such as high population densities where cells are nearby and capable of gene 359 

exchange (Kloesges et al. 2011, Fuchsman et al. 2017). 360 

Various environmental factors, including nitrogen levels, pH, and temperature as well 361 

as microbial alpha diversity, mobile genetic elements, and the presence of opportunistic 362 

pathogens, have been implicated in the dissemination of ARGs in the gut of red swamp 363 

crayfish Procambarus clarkii (Wanyan et al. 2023). Furthermore, a positive correlation 364 

between heavy metal levels and florfenicol resistance was observed in the gut microbiomes 365 

of 3 fish species reared in aquaculture. In that study, 20 ARGs associated with antibiotic 366 

efflux, inactivation, target alteration, target protection, target replacement, and reduced 367 

antibiotic permeability were detected, and their spread was linked to physicochemical factors 368 

of the water (Wang et al. 2022). These findings highlight the importance of HGT in the 369 

dissemination of antibiotic resistance and the role of environmental factors in shaping the 370 

spread of ARGs in aquaculture settings. The development of effective strategies to mitigate 371 

the emergence and spread of antibiotic resistance in aquaculture systems is crucial. Thus, 372 

HGT is a significant mechanism for microbes to acquire new genes and traits, allowing them 373 

to adapt to their environment more effectively. Studies have shown that certain microbial 374 

communities, particularly those inhabiting anaerobic and high-temperature environments, 375 

have a higher propensity for HGT and gene sharing (Fuchsman et al. 2017). However, 376 

salinity does not seem to have a similar effect on gene transfer. While HGT is well-377 

established as a mechanism for microbial evolution and co-evolution, its specific relevance to 378 



host disease dynamics, particularly in the context of co-infections, deserves more attention 379 

(Boto 2010, Fuchsman et al. 2017). 380 

The transfer of ARGs through HGT can have detrimental effects on co-infections and 381 

can pose challenges in the treatment of disease outbreaks in aquaculture. Similarly, the 382 

transfer of virulence factors via HGT can aggravate the severity of the disease outbreaks. It 383 

has been observed that warmer environments and laboratory settings exhibit higher rates of 384 

HGT, suggesting that global warming may potentially increase HGT rates (Fuchsman et al. 385 

2017, Pallares-Vega et al. 2021). 386 

4.  IMPACT OF GLOBAL WARMING ON AQUACULTURE DISEASES 387 

AND CO-INFECTIONS 388 

Temperature increases have profound effects on various micro- and macro-organisms, 389 

impacting biochemical, physiological, and behavioral processes (Vaumourin & Laine 2018). 390 

In the context of aquatic ecosystems, higher temperatures pose particular risks for 391 

ectothermic organisms, leading to heightened stress levels and compromised immune 392 

parameters (Harvell et al. 1999, Cascarano et al. 2021). These swelling temperature-induced 393 

stressors create favorable conditions for the occurrence and severity of co-infections. 394 

The relationship between augmented temperatures and microbial dynamics has 395 

important implications for disease outbreaks and co-infections in both terrestrial and aquatic 396 

ecosystems. Studies have shown that elevated temperatures can lead to increased prokaryote 397 

metabolic and evolution rates (Smith et al. 2019) as well as higher antimicrobial resistance 398 

through HGT (MacFadden et al. 2018, Reverter et al. 2020) ( ). This is particularly 399 

notable in bacterial pathogens such as Vibrio species, which have shown increased abundance 400 

and prevalence in response to rising seawater temperatures (Vezzulli et al. 2012, 2016). 401 

Correspondingly, there has been a reported increase in Vibrio species infections in humans, 402 

attributed to the expanding geographic range of Vibrio due to temperature addition (Froelich 403 

& Daines 2020). See Table 1 for references. 404 

Furthermore, experimental evidence has demonstrated higher mortalities in farmed 405 

aquaculture animals (oysters, carp) infected with bacterial and viral pathogens under warmer 406 

temperatures (Reverter et al. 2020, Combe et al. 2023). Given that the virus life cycle, 407 

including replication, is linked to the host’s metabolism, temperature escalation is expected to 408 

affect host–virus interactions (Danovaro et al. 2011) like biochemical, physiological, and 409 



behavioral processes in organisms, leading to increased stress and compromised immune 410 

systems in aquatic species, ultimately resulting in higher mortality rates of infected animals 411 

(Vaumourin & Laine 2018, Karvonen et al. 2021) (Fig. 1). 412 

Higher temperatures and longer warmer periods enhance viral propagation within 413 

hosts, resulting in higher viral loads and transmission rates (Boyko et al. 2000, Amari et al. 414 

2021). Warmer temperatures lead to increased opportunities for viral transmission among 415 

species that were previously geographically isolated (Jones 2020, Carlson et al. 2022, 416 

McKay, 2023). Notably, fluctuations and elevated water temperatures have been linked to 417 

reactivation and outbreaks of specific viruses such as CyHV-3 (St-Hilaire et al. 2005, Yuasa 418 

et al. 2008, Takahara et al. 2014) and OsHV-1 (de Kantzow et al. 2016, Prado-Alvarez et al. 419 

2016, Delisle et al. 2018). 420 

Global warming may lead to more disease outbreaks and co-infections in land and 421 

water ecosystems (Karvonen et al. 2010, Baker et al. 2022). Alterations in climatic conditions 422 

can disrupt ecological disease patterns, leading to the convergence of infections that would 423 

typically occur separately, ultimately resulting in co-infections and increased host mortality 424 

(Munson et al. 2008). For example, above-average winter temperatures have been associated 425 

with severe disease outbreaks involving co-infections between a bacterium, Anaplasma 426 

phagocytophilum, and a parasite, Babesia divergens, transmitted by ticks (Johnson et al. 427 

2020), which is a well-known terrestrial disease. Similarly, co-infection of goldfish Carassius 428 

auratus by an ectoparasite, Argulus sp., and a bacterium, Aeromonas hydrophila, cause 429 

temperature-dependent mortalities, with the highest mortalities occurring at higher 430 

temperatures Shameena et al. (2021). 431 

Temperature rise can also influence congener co-infection by facilitating the co-432 

existence of multiple pathogen lineages, thereby altering the course of infection development 433 

(Fargues & Bon 2004). Co-infections play a crucial role in maintaining genetic variation in 434 

pathogens, potentially accelerating their adaptation to environmental changes and leading to 435 

the emergence of new genetic variants with variable traits (Vaumourin & Laine 2018). 436 

Recent studies have shown that elevated water temperatures (28°C) can enhance the 437 

expression of virulent genes in A. hydrophila infecting rohu fish Labeo rohita (Pattanayak et 438 

al. 2020). 439 

Based on the presented evidence, to advance our understanding in this area, urgent 440 

research is needed to address the following questions: (1) How does global warming affect 441 



the complex dynamics of inter and intra-specific co-infections? (2) What is the combined 442 

impact of elevated temperature and co-infections on disease severity and morbidity? (3) Does 443 

the temperature escalation favor the selection of more virulent pathogens? Investigating these 444 

aspects will provide valuable insights into the consequences of global warming on pathogen 445 

dynamics and the potential for increased virulence. 446 

5.  A FRAMEWORK TO STUDY CO-INFECTIONS IN 447 

AQUACULTURE 448 

Co-infections have a significant impact on the severity and mortality rates of disease 449 

outbreaks in aquaculture. In this regard, we propose a framework to address 3 key knowledge 450 

gaps regarding co-infections in aquaculture: (1) Detection of co-infections in aquatic species 451 

and aquaculture settings, (2) Understanding the mechanisms and dynamics of co-infections, 452 

and (3) Developing effective treatments for co-infections ( ). 453 

To tackle the first knowledge gap, the development and application of advanced 454 

diagnostic techniques, such as next-generation sequencing (NGS) and metagenomics or 455 

digital PCR (dPCR), can enable the simultaneous detection of multiple pathogens in a single 456 

sample. These approaches will provide a comprehensive view of the co-infection landscape 457 

in aquaculture systems. 458 

To address the second knowledge gap, studies integrating ecological and 459 

epidemiological approaches are needed. Longitudinal monitoring of co-infection dynamics 460 

coupled with detailed ecological data on host–pathogen interactions and environmental 461 

factors can elucidate the mechanisms underlying co-infection patterns and their impacts on 462 

disease progression. Cell culture for laboratory experimentation and mathematical modeling 463 

will assist with this task. 464 

Finally, addressing the third knowledge gap requires the development of targeted 465 

treatments for co-infections. This can involve the identification of key molecular pathways or 466 

host immune responses that can be modulated to mitigate the severity of co-infections. 467 

Additionally, the use of innovative treatment strategies, such as genetic manipulation, phage 468 

therapy, or combination therapies, should be explored to effectively combat co-infections in 469 

aquaculture. 470 

By adopting this framework and leveraging novel methods and technologies, we can 471 

significantly advance our understanding of co-infections in aquaculture. This knowledge will 472 



ultimately contribute to the development of effective strategies for disease management and 473 

prevention, ensuring the sustainability and productivity of aquaculture systems. 474 

5.1.  Detecting and understanding co-infections in aquaculture 475 

The impact of global warming on pathogen interactions highlights the importance of 476 

promptly detecting co-infections in aquaculture disease management. To understand how 477 

microorganisms cooperate to induce pathogenesis in the host, various technologies are 478 

available. 479 

5.2.  dPCR 480 

dPCR is a highly sensitive and accurate method for absolute quantification of DNA 481 

samples, eliminating the need for standard curves. This technique involves distributing DNA 482 

across multiple replicate reactions, enabling the use of Poisson statistics for precise 483 

quantification (Sedlak & Jerome 2013). By directly calculating the DNA molecule number 484 

from positive and negative reactions, dPCR provides absolute quantification and can 485 

determine the number of DNA copies per ml, particularly for low viral loads (Sedlak & 486 

Jerome 2013). Moreover, dPCR exhibits increased sensitivity and precision compared to 487 

traditional PCR assays or even multiplex PCR, making it capable of detecting mutant 488 

sequences that may be undetected by sequencing methods. 489 

In the field of aquaculture, traditional microbiological diagnostics often have 490 

limitations in terms of precision and specificity, particularly for the detection of pathogens 491 

such as bacterial species and viral quasispecies. However, recent studies have demonstrated 492 

the potential of dPCR in aquaculture disease management. For example, the Naica System, a 493 

dPCR platform, was utilized for the absolute quantification of 5 bacterial species (Moritella 494 

viscosa, Yersinia ruckeri, Flavobacterium psychrophilum, Listeria monocytogenes, and 495 

Desulfovibrio desulfuricans) in environmental samples from salmonid aquaculture (Netzer et 496 

al. 2021). This technology eliminates the need for calibration curves and minimizes 497 

inaccuracies caused by variations in reaction efficiencies and the risk of cross-contamination 498 

(Netzer et al. 2021). 499 

Additionally, a third-generation PCR technology digital droplet PCR (ddPCR) has 500 

been developed for simultaneous diagnosis of the bacterial pathogens F. psychrophilum and 501 

Y. ruckeri in water samples from land-based recirculation aquaculture system (RAS) used for 502 

Salmo salar production (Lewin et al. 2020). ddPCR demonstrated high sensitivity and 503 



specificity in detecting both fish pathogens, including 4 subspecies, even at low 504 

concentrations in water samples (Lewin et al. 2020). This is a valuable tool for studying the 505 

evolution of pathogens such as CyHV-3 (Klafack et al. 2019). 506 

5.3.  Cell culture and NGS 507 

In vitro experiments using cell cultures play a crucial role in studying co-infection in 508 

cultured aquatic animals and the evolution of pathogens. These experiments provide valuable 509 

insights into viral evolution, enabling researchers to unravel haplotype mixtures and 510 

understand variations within viral quasispecies (Klafack et al. 2019, Vega-Heredia & Giffard-511 

Mena 2021). By conducting in vitro studies, it is possible to manipulate and control 512 

experimental conditions to observe the interactions between multiple pathogens and their 513 

hosts. 514 

One interesting experiment was conducted with salmonid viral co-infection, where it 515 

was discovered that when 2 viruses infect salmon, one virus can affect the growth of the other 516 

virus: IHNV decreased substantially when IPNV was present. Only a small percentage of 517 

cells contained IHNV, while more cells contained IPNV. The order in which the viruses were 518 

introduced did not change the results (Alonso et al. 1999). Salmonid cell lines can produce 519 

interferon-like activity, an ability to ‘interfere’ with viral replication, in this particular 520 

example against IHNV but not against VHSV, potentially inducing an immune response by 521 

activating natural killer cells and macrophages, which makes also this cell line a useful model 522 

for studying IFN-induced cytokines against co-infection in salmonid fish viruses (Rodriguez 523 

et al. 2005). 524 

Similarly, studies using cell lines infected with IPNV demonstrated restricted 525 

replication of VHSV, suggesting viral interference and providing insights into the blockage 526 

of viral RNA synthesis in the early stages of VHSV infection (Parreño et al. 2017). Also, the 527 

Grunt Fin (GF) cell line has been used to propagate nervous necrosis virus (NNV) and 528 

Megalocytivirus species (e.g. ISKNV), highlighting its potential for the production of a 529 

bivalent vaccine (Jitrakorn et al. 2020). Despite these significant findings, it is worth noting 530 

that stable host cell lines for the study of aquatic viruses remain limited (Vega-Heredia & 531 

Giffard-Mena 2021). 532 

Advancements in genomics and NGS have transformed our understanding of co-533 

infectious diseases in aquaculture, providing a powerful tool for identifying and 534 

characterizing pathogens and their interactions in aquatic environments. For example, 535 



complete sequencing of the CyHV-3 genome has enabled the characterization of genetic 536 

variants and the study of the ecological and evolutionary aspects of mixed-genotype 537 

infections (Hammoumi et al. 2016). Knowledge of viral mutation rates, influenced by 538 

selective pressures, genetic drift, and recombination helps us comprehend immune escape, 539 

co-infection pathogenesis, intra-host genetic variations, and the emergence of new diseases 540 

(Sanjuán & Domingo-Calap 2016). 541 

5.4.  Phylogenetic approaches to study co-infection 542 

Phylogenies, or evolutionary trees, are valuable tools for visualizing and analysing 543 

data and, depending on the research question, can assist in illustrating the relatedness 544 

between different species or strains, providing crucial insights into the identification of 545 

distinct genetic variants among pathogens, both within and among hosts. Notably, the 546 

application of phylogenetic analysis has revealed the presence of diverse CyHV-3 haplotypes 547 

within individual carp hosts, underscoring the genetic heterogeneity of the virus (Avarre et al. 548 

2012). Furthermore, comprehensive genetic characterization coupled with phylogenetic and 549 

recombination analysis has shed light on the occurrence of potential inter-lineage 550 

recombination within the CyHV-3 strain, highlighting the existence of 2 genetic lineages 551 

(Gao et al. 2018). 552 

In the context of co-infection in crayfish involving WSSV and Aeromonas veronii, a 553 

phylogenetic tree was constructed based on the amino acid sequences of 16S rRNA from 554 

bacteria species. Through this analysis, the bacterial strain LY-1, isolated from the crayfish 555 

gill, was identified as A. veronii (Yuan et al. 2021). 556 

In prokaryotes, several evolutionary mechanisms such as HGT can also result in 557 

recombination and genetic variation. In this scenario, phylogenetic trees can help detect and 558 

identify similarities between the different variants, including the detection of individual genes 559 

that might have been transferred between strains (Koonin et al. 2001, Boucher et al. 2003, 560 

Rhodes et al. 2011). For instance, the complete genome sequence of Vibrio harveyi 345 was 561 

compared with 30 other V. harveyi strains, revealing evidence of gene exchange, including 562 

pathogenic and drug resistance genes, through HGT, which could contribute to pathogenicity 563 

and drug resistance (Deng et al. 2019). 564 

Phylogenetic statistical methods provide a means to detect, quantify, and explain the 565 

clustering of co-infection diseases. By analyzing the evolutionary relationships and genetic 566 

similarities among pathogens, these methods can uncover patterns of co-infection and shed 567 



light on the factors contributing to disease clustering and transmission dynamics. In our own 568 

experience for phylogenetic analyses, several tools should be used and compared, and as 569 

rules of thumb: ‘the longer sequences, the better’, ‘the more genes, the better’, and ‘complete 570 

genomes are better’. 571 

6.  VACCINES AND PHAGE THERAPY FOR MANAGING CO-572 

INFECTIONS IN AQUACULTURE 573 

6.1.  Vaccines 574 

Fish vaccination has proven to be an effective strategy for preventing losses in fish 575 

farms, particularly in Northern Europe and North America (Sommerset et al. 2005, Sudheesh 576 

& Cain 2017). There are various methods of fish vaccination, including oral administration 577 

through feed (a large number of fish can be mass-vaccinated easily), immersion in a diluted 578 

vaccine suspension, and injection (Sommerset et al. 2005). One successful example of fish 579 

vaccination involves the use of a combined vaccine consisting of heat-inactivated KHV and 580 

formalin-inactivated Aeromonas hydrophila bacterium. This vaccine is administered orally in 581 

a volume of 3 ml, with a ratio of 2 parts KHV to one part A. hydrophila (Lusiastuti et al. 582 

2020). This combined vaccine enhances the immune response in common carp Cyprinus 583 

carpio L. and koi C. carpio var. “koi” protecting against these pathogens. By utilizing oral 584 

vaccination methods, a large number of fish can be easily mass-vaccinated, making it a 585 

practical and efficient approach for disease prevention in aquaculture settings. 586 

Several multivalent vaccines have been developed to target multiple pathogens in fish 587 

species, offering a convenient and effective approach to preventing co-infection diseases in 588 

aquaculture. One example is a multivalent vaccine against salmonid rickettsial septicaemia 589 

(SRS), infectious salmon anemia (ISA), IPNV, Aeromonas salmonicida (AS) and Vibrio 590 

ordalii ( ) (Tobar et al. 2015). This vaccine combines antigens from different 591 

pathogens into a single formulation, providing broad-spectrum protection against multiple 592 

diseases. 593 

Similarly, another multiple vaccine targets Vibrio anguillarum and V. ordalii 594 

(Galindo-Villegas et al. 2013). By including antigens from both pathogens, this vaccine 595 

offers protection against multiple Vibrio species (Table 2), which cause significant disease in 596 

fish. In European seabass Dicentrarchus labrax, a long-term commercial bivalent vaccine has 597 

been developed against V. anguillarum and Photobacterium damselae subsp. piscicida, this 598 



vaccine stimulates the production of specific antibodies for each pathogen, providing targeted 599 

protection against both pathogens and the fish (Spinos et al. 2017). 600 

Furthermore, autogenous and commercial immersion vaccines (Table 2) have been 601 

developed for Danish rainbow trout Oncorhynchus mykiss to combat Yersinia ruckeri 602 

serotype 01, biotypes 1 and 2 (Yang et al. 2021). These vaccines, using local pathogen strains 603 

for immunization, provide protection and reduce the bacterial load in exposed fish, 604 

demonstrating their efficacy in disease control. 605 

In hybrid tilapia (Oreochromis mossambicus × O. niloticus), a newly developed feed-606 

based bivalent vaccine against Streptococcus iniae and A. hydrophila has shown significant 607 

and non-specific and specific immunological responses, leading to robust protection 608 

compared to the unvaccinated group (Monir et al. 2020). These examples highlight the 609 

effectiveness of multivalent vaccines in providing broad protection against multiple 610 

pathogens in different fish species. By combining antigens from various pathogens into a 611 

single vaccine formulation, these vaccines offer a practical solution for disease prevention in 612 

aquaculture and contribute to the overall health and well-being of farmed fish populations. 613 

Vaccination in crustaceans has been a subject of debate, primarily because it was 614 

traditionally believed that crustaceans lacked adaptive immunity similar to vertebrates. 615 

However, recent research has challenged this notion and shed light on how the immune 616 

system of crustaceans responds to pathogens (Quintin et al. 2014, Chen-Fei et al. 2020). 617 

These findings suggest that crustaceans possess certain mechanisms for recognizing and 618 

responding to pathogens, although they may differ from the adaptive immunity observed in 619 

vertebrates. Evidence has shown that crustaceans can experience viral accommodation, 620 

whereby they tolerate multiple viral infections as persistent infections (Flegel et al. 2004, 621 

2009, Flegel 2020). Crustaceans also can coexist with viruses and initiate responses to control 622 

viral replication and minimize the negative effects of infection. Furthermore, the presence of 623 

heritable EVEs in crustacean genomes indicates the long-standing interaction between 624 

crustaceans and viruses, suggesting a history of viral infections and the evolution of immune 625 

responses (Flegel 2020). Laboratory tests have shown that injecting or feeding crustaceans 626 

with double-stranded RNA (dsRNA) can inhibit co-infection of homologous viruses 627 

(Itsathitphaisarn et al. 2017, Flegel 2020). This indicates that dsRNA treatment can stimulate 628 

the immune system to mount antiviral responses, offering potential protection against viral 629 

co-infections in crustaceans. This immune stimulation could have important implications for 630 

their overall health and survival in the face of viral threats. 631 



While the understanding of the immune response in crustaceans is still evolving, these 632 

studies highlight the potential for immunological responses and viral accommodation in 633 

crustaceans. Further research is needed to elucidate the specific mechanisms of crustacean 634 

immune responses and explore the possibility of developing vaccination strategies that can 635 

enhance their immune defences against viral infections. 636 

6.2.  Phage therapy 637 

Phage therapy has reemerged as a promising alternative to antibiotics and vaccines for 638 

the treatment of bacterial infections, particularly in shrimps, which lack a specific immune 639 

response that can be effectively trained by vaccines (Culot et al. 2019, Li et al. 2019, Pirnay 640 

2020). Phage cocktails, which consist of multiple phages targeting specific bacteria, have 641 

shown a synergistic effect by combining 2 or more phages against the same bacterium 642 

(Schmerer et al. 2014, Culot et al. 2019). Phage cocktails are designed to target different 643 

receptors of the same bacteria, thereby slowing down the development of bacterial resistance. 644 

This approach has been successful in combating bacterial infections in aquaculture farms. 645 

Phage libraries can be constructed and tested against pathogenic strains isolated from specific 646 

aquaculture farms, allowing for the development of tailored phage therapies (Culot et al. 647 

2019). For instance, there is a phage cocktail available for combating V. tubiashii and V. 648 

coralliitycis infections in oyster aquaculture, developed by Intralytix (2016). Another 649 

example is BAFADOR, a phage-based therapy developed by Proteon Pharmaceuticals, which 650 

targets Pseudomonas spp. and Aeromonas spp. and is administered via immersion (Grzelak 651 

2017, Culot et al. 2019). While multivalent options have been explored for certain fish 652 

species (Schmerer et al. 2014, Grzelak 2017, Culot et al. 2019), there is still an opportunity 653 

for developing phage therapies for other important species such as shrimp and mollusks. 654 

Further research and development efforts are needed to expand the application of phage 655 

therapy in aquaculture, including the exploration of multivalent phage cocktails that allow 656 

treating co-infections affecting shrimp, mollusks, and other species of interest. 657 

7.  FUTURE STRATEGIES TO MANAGE CO-INFECTIONS IN 658 

AQUACULTURE 659 

Climate warming is projected to increase the impacts of bacterial and viral diseases in 660 

aquaculture globally, and it is expected that higher temperatures will exacerbate this threat by 661 

creating conditions more favorable for disease outbreaks. This poses risks to food security 662 



and livelihoods in many regions that are reliant on aquaculture production. A better 663 

understanding of co-evolutionary dynamics, improved diagnostics, vaccines, and integrated 664 

management strategies will be key to sustainable disease control under climate change. Thus, 665 

we propose the following strategies as general rules to manage diseases in aquaculture: (1) 666 

selective breeding for disease resistance and thermotolerance (Carabaño et al. 2019); (2) 667 

improved biosecurity and sanitation on farms (FAO 2022); (3) use of immunostimulants, 668 

probiotics, and antivirals (Newaj-Fyzul & Austin 2015); (4) restricted antibiotic use policies 669 

and development of alternatives (Okeke et al. 2022); (5) climate-smart aquaculture practices 670 

like recirculating systems (Bergman et al. 2020, Ahmed & Turchini 2021); and (6) improving 671 

national and international cooperation for wildlife health as an essential component of global 672 

disease prevention, surveillance, control, and mitigation (Mackenzie & Jeggo 2019). 673 

An ideal scenario involves having access to state-of-the-art technology and the ability 674 

to apply it practically in real-time disease detection methods. This entails utilizing platforms 675 

or wearable devices to swiftly identify and monitor disease occurrences or symptoms, 676 

providing early alerts for potential outbreaks, and tracking the spread of diseases and their 677 

virulence. Such systems can greatly benefit the health sector by promptly informing about the 678 

health situation in a specific area. This can be coupled with a register of the environmental 679 

characteristics, including sea water temperature, which can contribute to the creation of 680 

temperature models forecasting different diseases. To achieve real-time disease detection, the 681 

use of machine-learning algorithms for analyzing vast amounts of data is essential. 682 

Nevertheless, this task is challenging and complex, requiring advanced technologies, 683 

interdisciplinary collaboration, and the involvement of various stakeholders. Despite the 684 

challenges, adopting such methods presents numerous opportunities to enhance health 685 

outcomes and prevent diseases effectively. However, it is also important to take into 686 

consideration the wide diversity of aquaculture practices around the world, and the 687 

opportunities and limitations that each type of practice may offer. For example, closed, 688 

highly controlled systems that are not affected by environmental temperature may benefit 689 

from strategies aimed to prevent the entry of pathogens into the systems (i.e. water sterilizing 690 

technologies), whilst systems highly connected to the surrounding environments will need a 691 

multi-pronged approach to tackle both global warming and the increase of co-infections, such 692 

as those described above. 693 

8.  CONCLUSIONS 694 



Co-infections in aquaculture pose a significant challenge, and improving our 695 

understanding of this phenomenon is crucial for effective disease management. Currently, co-696 

infections are often overlooked and treated with unspecific approaches, leading to reduced 697 

efficacy and potential negative impacts on the aquaculture industry. Furthermore, the 698 

combination of disease outbreaks, indiscriminate drug use, and the looming threat of global 699 

warming exacerbates the urgency of addressing co-infections. To address these challenges, it 700 

is imperative to improve diagnostic methods that can identify multiple pathogens during 701 

infection outbreaks. This includes enhancing our knowledge of the interactions between 702 

pathogens and their co-evolutionary dynamics, which drive pathogen diversification and 703 

impact disease dynamics. Understanding the effects of rising water temperatures on co-704 

infections is also vital, as higher temperatures can promote stronger interactions between 705 

pathogens, increase pathogenicity, and exacerbate the negative consequences on stressed and 706 

immune-compromized aquatic animals. 707 

By reviewing the current evidence, we suggest that frequent increases in water 708 

temperatures can promote stronger interactions between pathogens and enhance 709 

pathogenicity at the individual level, which, combined with stressed and immune-710 

compromized aquatic animals, may have devastating effects. According to the present 711 

review, we propose that the scientific community should consider (1) enhancing studies at the 712 

individual and cellular level of prevalent co-infective aquatic pathogens at multiple expanded 713 

temperatures, to start elucidating the co-infective dynamics at different swelling temperature 714 

regimes; (2) exploring the genetic interactions between bacteria–bacteria, bacteria–virus, and 715 

virus–virus during multiple infectious experiments; (3) implementing the use of technologies 716 

such as dPCR, NGS, and cell culture to explore phylogenetic approaches, to unravel the 717 

presence of new pathogens or variants; (4) the continued development of low-cost and 718 

effective vaccines and treatments (such as phage therapy) for multiple pathogens for cultured 719 

aquatic species. 720 

By addressing these research priorities, we can advance our understanding of co-721 

infections in aquaculture, develop improved diagnostic tools, and identify effective strategies 722 

for disease prevention and management. Such efforts are crucial for ensuring the 723 

sustainability and resilience of the aquaculture industry in the face of evolving pathogen 724 

dynamics and environmental challenges. 725 
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Table 1. Adaptive interactions and effects of high temperature on bacterial and viral pathogen co-infections in aquacultural species. NA: not 1184 

analyzed; ND: no effect detected; S: synergistic; A: antagonistic   1185 

Host species Co-infections 

Type of 

adaptative 

interaction 

Temperature 

effects 

low/high 

Mortality rate 

(%) 

Monoinfection 

/ co-infection 

Immunity genes 

expressed 
Co-infection method Reference 

 Bacterial co-infections       

Salmo salar Alivibrio wodanis and 

Moritella viscosa 

A NA NA Genes encode 

bacteoriocins 

In vitro mono and co-culture, 

sequencing, gene expression 

Hjerde et al. 

(2015)  

Salmo salar A. Wodanis and M. 

viscosa 

A Increase 

mortality or 

virulence / ND 

53 / 72 NA Culture cytotoxicity assays, cell 

culture, and experimental 

infection 

Karlsen et al. 

(2014) 

Oreochromis 

niloticus L. 

Streptococcus agalactiae 

and Francisella 

noatunensis 

S Increase 

mortality or 

virulence / ND 

37.5 and 87.5 / 

100 

NA Experimental infection, 

sequencing and MLST, and 

REP-PCR analysis 

Assis et al. 

(2017) 

Mugil cephalus Aeromonas hydrophila 

and Vibrio 

parahaemolyticus 

S ND / increase 

mortality or 

virulence 

 

NA / 75–87 NA Water quality parameters, 

biochemical identification, 

sequencing, and phylogenetic 

analysis 

El-Son et al. 

(2021) 

 Bacterial and viral co-

infections 

      

Oreochormis 

niloticus 

A. hydrophila and tilapia 

lake virus (TiLV) 

S NA 6.7 and 34 / 93 NA Biochemical identification, 

sequencing, experimental 

infection, histopathology 

Nicholson et al. 

(2020) 

Oreochormis 

spp. 

S. agalactiae and spleen 

and kidney necrosis virus 

(ISKNV) 

S NA NA NA Histopathology, electron 

microscopy, cell culture, and 

sequencing 

Ramírez-

Paredes et al. 

(2021) 



 

Siniperca 

chuatsi 

A. hydrophila and ISKNV S NA 22.9 and 38.1 / 

81.9 

IRF1, Mx, Viperin, 

HEPCIDIN, TNFα, 

IL-1β 

Experimental infection, 

histopathology, gene expression 

Liu et al. 

(2020) 

Litopenaeus 

vannamei 

V. parahaemolyticus and 

white spot syndrome virus 

(WSSV) 

A NA 97 / 83 ACP, AKP, POD, 

SOD, and 

LvECSIT 

Experimental infection and gene 

expression 

Pang et al. 

(2019) 

Litopenaeus 

vannamei 

V. parahaemolyticus, V. 

anguillarum and WSSV 

S NA 12.5 and 29.2 / 

37.5 and 50 

ProPO, LvMyD88, 

Lvakt 

Experimental infection and gene 

expression 

Jang et al. 

(2014) 

Procambarus 

clarkii 

Aeromonas veronii and 

WSSV 

S NA 70 and 83.3 

/100 

NA Experimental infection, 

physiological, biochemical and 

histological identification, 

antibiotic susceptibility 

Yuan et al. 

(2021) 

Crassostrea 

gigas 

Opportunistic bacteria and 

ostreid herpesvirus 

(OsHV-1 µVar) 

S NA NA Viperin, cGAS, 

IRF, TNF, SOCS2, 

CgBigdef2, Cg-

PRP, Cg-EcSOD, 

among others 

Experimental infection, in situ 

hybridization, transcriptome 

analyses 

De Lorgeril et 

al. (2018) 

 Viral co-infections       

Salmo trutta Infectious pancreatic 

necrosis virus (IPNV) and 

infectious hematopoietic 

necrosis virus (IHNV) 

A NA NA Mx, IFN-I Cell culture, cell cytotoxicity 

assay and gene expression 

Saksmerprome 

et al. (2011) 

Paralichthys 

olivaceus 

Viral hemorrhagic 

septicemia virus (VHSV) 

and aquabirnavirus (ABV) 

A NA 90–100 and 0–

45 / 0 and 40–

80 

Mx, IFNs Experimental infection, cell 

culture and gene expression 

Pakingking et 

al. (2004) 

Litopenaeus 

vannamei 

WSSV and infectious 

hypodermal and 

hematopoietic necrosis 

virus (IHHNV) 

S NA NA LGBP, ProPO, 

peroxinectin 

Experimental infection and gene 

expression 

Yeh et al. 

(2009) 



 

Cyprinus 

carpio L. 

CyHV-3 haplotypes A NA 90 / 18 and 28 NA Experimental infection, cell 

culture, sequencing, digital PCR  

Klafack et al. 

(2019) 
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 1187 

 1188 

Table 2. Commercially available vaccines (and treatments) against co-infections in aquacultural species. ND: not determined; NA: not analyzed; 1189 

IPNV: infectious pancreatic necrosis virus; SRS: salmonid rickettsial septicemia; AS: Aeromonas salmonicida; Vo: Vibrio ordalli; ISA: 1190 

infectious salmon anemia; KHV: koi herpes virus; IHNV-Sn1203: infectious hematopoietic necrosis virus, isolate Sn1203; IPNV-ChRtm213: 1191 

IPNV, isolate ChRtm213 1192 

Host Weight Co-infection Treatment Administration Duration of 

immunity 

Reference 

Vaccines       

Salmo salar 30 g IPNV, SRS, AS, Vo, ISA Blueguard Intraperitoneal NA Tobar et al. (2015) 

S. salar, Oncorhynchus 

mykiss, O. kisutch and O. 

tschawytscha 

30 g Piscirichettsia salmonis and 

IPNV 

Blueguard Intraperitoneal NA Tobar et al. (2015) 

S. salar, O. mykiss, O. kisutch 30–50 g SRS and ISA Virbac-Centrovet 

polyvalent vaccine 

Injection and 

Oral 

NA Tobar et al. (2015) 

O. mykiss and Dicentrarchus 

labrax 

ND Vibrio anguilarum and V. 

ordalii 

AQUAVAC Vibrio 

oral 

Oral Throughout the 

production cycle 

Galindo-Villegas et 

al. (2013) 

Oreochromis spp. Minimum 

10 g 

Streptococcus agalactiae 

(serotype lb) and S. iniae 

AQUAVAC STREP 

SA-SI 

Intraperitoneal At least 6 mo MSD Animal Health 

(2022) 

D. labrax 2.5 g V. anguillarum biotype I and 

II and Photobacterium 

damsela 

AQUAVAC Vibrio 

pasteurella 

Intraperitoneal NA Spinos et al. (2017) 



 

Oreochromis mossambicus × 

O. niloticus 

5% body 

weight 

S. iniae and Aeromonas 

hydrophila 

Bivalent vaccine Oral NA Monir et al. (2020) 

Cyprinus carpio L. and C. 

carpio ‘koi’ 

5–10 g A. hydrophila and KHV Bivalent vaccine Oral NA Lusiastuti et al. 

(2021) 

O. mykiss 5 g IHNV-Sn1203 and IPNV-

ChRtm213 

Bivalent vaccine Intraperitoneal 

and 

Intramuscular 

30–60 d Xu et al. (2017) 

S. trutta L. 2–7.5 g IPNV and IHNV DNA vaccine Intramuscular 30 d de las Heras et al. 

(2010) 

O. mykiss 34 g A. salmonicida subsp. 

salmonicida, V. anguillarum, 

Yersinia ruckeri 

Pentavalent vaccine Intraperitoneal NA Marana et al. (2019) 

   Phage therapy    

All fish species ND Pseudomonas spp. and 

Aeromonas spp. 

BAFADOR 

(Proteon 

Pharmaceuticals) 

Feed additive 

for food or 

water bath 

NA Grzelak (2017) 

Oysters ND V. tubiashii and V. coralliitycs Intralytix (phage 

cocktail) 

ND NA Intralytix (2016) 

1193 



 

 1194 

 1195 

Fig. 1. The rise in extreme temperatures due to global warming is causing increased stress 1196 

and physiological changes in aquatic species, compromising their immune systems and 1197 

making them more susceptible to parasitic infections. The severity of viral and bacterial 1198 

disease outbreaks is amplified in these conditions. Co-infections, where multiple pathogen 1199 

agents can interact within the same host, can take 3 distinct forms: (1) co-infection by 2 1200 

different species of bacteria, (2) co-infection by 2 different species of viruses, or (3) co-1201 

infection by a virus and a bacterium. These interactions between mixed genotypes of 1202 

pathogens and hosts can lead to the production of new variants, driving co-evolution. 1203 

Understanding the complex interplay of bacterial and viral co-infections in aquaculture under 1204 

global warming is crucial for mitigating the impact of disease on aquatic species. Created 1205 

with BioRender 1206 
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 1208 

Fig. 2. Proposed research avenues and tools to advance the field of co-infections in 1209 

aquaculture. NGS: next-generation sequencing; dPCR: digital PCR. Created with BioRender 1210 
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