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A B S T R A C T

We present a theoretical model to analyse the hydrodynamics of wave energy converters (WECs)
comprised of three-dimensional, rigid, floating, compound rectangular plates in the open sea.
The hydrodynamic problem is solved by means of Green’s theorem and a free-surface Green’s
function. Plate motion is predicted through decomposition into rigid natural modes. We first
analyse the case of a single rectangular plate and validate our model against experimental
results from physical model tests undertaken in the COAST laboratory at the University of
Plymouth. Then we extend our theory to complex shapes and arrays of plates and examine how
the geometry, incident wave direction and power take-off (PTO) coefficient affect the response
of the platform and the consequent absorbed energy.

1. Introduction

In recent years, there has been significant interest in the analysis of floating plates used for wave energy conversion (Renzi et al.,
2021; Michele et al., 2020), offshore solar energy (Yang et al., 2024), and ice sheet dynamics (Meylan and Squire, 1996). Theoretical
models have been developed for the hydro-elastic responses of an array of elastic plates (Peter and Meylan, 2004; Bennetts et al.,
2010), rectangular plates in channels (Geng et al., 2022; Ren et al., 2024), free-floating and submerged porous bodies (Zheng
et al., 2020), compound floating plates (Kabakhpasheva and Korobkin, 2002), the time-dependent transient responses of elastic
plates (Montiel et al., 2012) and floating elastic plates of variable properties (Porter and Porter, 2004; Bennetts et al., 2007; Kohout
et al., 2007; Singh and Gayen, 2023; Korobkin et al., 2023; Meylan et al., 2021; Michele et al., 2024). In the offshore renewable
energy (ORE) sector, flexible WECs offer an effective way to increase wave power absorption. Recently, Renzi (2016) analysed
a two-dimensional piezoelectric WEC and showed that the device can extract sufficient energy to drive low-power applications.
Meanwhile, Michele et al. (2022, 2023) developed advanced models based on an extension of linear potential flow theory for the
hydrodynamics of two-dimensional and circular flexible WECs combined with PTO units deployed under a free-floating elastic plate.

Applications of combined rectangular floating plates for wave energy extraction have not yet been fully investigated. Noad and
Porter (2017) analysed the power extraction efficiency of an articulated rectangular raft using a semi-analytic theoretical model.
In the present paper, we consider a complex platform geometry involving a series of localised vertical PTO cables used to extract
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wave power. To study the performance of our proposed platform, we develop a mathematical model that solves the radiation and
diffraction velocity potentials by means of Green’s function and Green’s theorem (Noblesse, 1982; Newman, 1985; Xie et al., 2018) in
a similar fashion to the analysis of the ice-sheet problem by Meylan (2002). Plate response is determined from the complex amplitude
of each natural mode obtained through solution of the dynamic equation. We remark that the vast majority of hydrodynamic models
consider floater systems of simple geometry (e.g. circular or two-dimensional), mainly because the standard eigenfunction expansion
approach can be easily applied to such simple body shapes; however, this clearly narrows the range of applications. Conversely, the
theoretical model presented herein can be extended to any floating body geometry.

We further validate our theoretical model against results obtained from physical tests undertaken in the Coastal, Ocean and
Sediment Transport (COAST) laboratory at the University of Plymouth. On analysing the data, we determine heave and pitch
response amplitude operators of a floating rectangular barge in regular waves, and examine the influence of wave frequency. The
measured barge responses match theoretical predictions, thus confirming the reliability of our model based on linear potential
flow theory. Furthermore, by determining second harmonic plate displacements in regular waves we show that the presence of
higher harmonics affect the barge response. We finally analyse the influence of incident wave direction, platform size and geometry
on power extraction efficiency and the surrounding wave field. These factors of influence have both constructive and destructive
impacts which affect key hydrodynamic properties such as the exciting force/moment, added mass/inertia, and radiation damping.
Our results indicate that platform shape has a major effect on WEC hydrodynamics and the free-surface elevation field and so should
be carefully analysed during the design of WECs and ORE platforms (such as hybrid floating solar farms or wind energy platforms).

2. Mathematical model

Fig. 1 depicts configurations of three-dimensional floating rigid WEC platforms comprised of rectangular plates. Specifically:
- SET 1a consists of a single rectangular plate of area 4𝐵𝐿, SET 1b and SET 1c describe a platform made of two rectangular

plates each of area 2𝐵𝐿, whereas SET 1d represents the case of four rectangular plates each of area 𝐵𝐿 separated by distances 2𝑙
and 2𝑏. All the plates are rigidly connected to one another;

- Configurations SET 2a and SET 2c describe indented T-shaped platforms, whereas SET 2b represents a symmetric cross-shaped
platform with 𝑏 and 𝑙 being the dimensions of the indentations;

- SET 3a and SET 3c represent C-shaped platforms, whereas the configuration SET 3b depicts a symmetrical I-shape platform
with indentations each of length 𝑙.

We assume the platform draft to be much smaller than dimensions 𝐵,𝐿, 𝑙, 𝑏 and incident wavelength (Watanabe et al., 2004),
such that wave forces on the vertical platform walls can be neglected at leading order. We also assume the platform to be located in
open sea of very large depth, and define a Cartesian reference system with 𝑥 and 𝑦-axes coincident with the undisturbed horizontal
free-surface level and 𝑧-axis pointing vertically upward. The platform is connected to an idealised PTO system composed of vertical
cables each located at 𝑥 = 𝑥𝑖 and 𝑦 = 𝑦𝑖, 𝑖 = 1,… , 𝐼 , where 𝐼 is the total number of PTOs.

The displacement of the platform is described by the following dynamic equation,

𝜇𝜕𝑡𝑡𝑊 = 𝑞, on 𝑆𝑝, (1)

where 𝑊 is the plate vertical displacement, 𝑡 is time, 𝑞 is the transversely distributed vertical load (positive in the 𝑧-direction), 𝜇 is
the constant mass per unit wetted area of the platform, and 𝑆𝑝 is the platform wetted surface. In defining the linearised hydrodynamic
problem, it is assumed that the fluid is inviscid and the flow is irrotational, such that the velocity potential 𝛷(𝑥, 𝑦, 𝑧, 𝑡) satisfies
Laplace’s equation

∇2𝛷 = 0, (2)

in the fluid domain 𝛺. At the free surface 𝑆𝑓 , we apply linearised kinematic and mixed boundary conditions,

𝜕𝑡𝜁 = 𝜕𝑧𝛷, 𝜕𝑡𝑡𝛷 + 𝑔𝜕𝑧𝛷 = 0, on 𝑆𝑓 , (3)

where 𝜁 is free-surface elevation and 𝑔 = 9.806 m s−2 is acceleration due to gravity. We also assume negligible fluid motion at large
depth, i.e.,

(

𝛷, 𝜕𝑧𝛷
)

→ 0, 𝑧→ −∞. (4)

Given that the platform draft is assumed to be much smaller than the platform horizontal dimensions, the kinematic boundary
condition at the wetted surface of the platform can be Taylor-expanded about 𝑧 = 0. The linearised condition becomes

𝜕𝑧𝛷 = 𝜕𝑡𝑊 , on 𝑆𝑝. (5)

We neglect initial transient motion and consider cases where the plate is forced by monochromatic incident waves of constant
frequency 𝜔 and amplitude 𝐴. The following harmonic expansion applies

{𝛷, 𝜁,𝑊 } = Re
{

(𝜙, 𝜂,𝑤)𝑒−i𝜔𝑡
}

, (6)

in which i is the imaginary unit. Writing the governing equations and boundary equations in terms solely of spatial variables:

∇2𝜙 = 0, in 𝛺, (7)
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Fig. 1. View from above of all the configurations and side view of the floating platform and PTO cables.
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𝜕𝑧𝜙 = −i𝜔𝜂, on𝑆𝑓 , (8)

𝜕𝑧𝜙 = 𝜔2

𝑔
𝜙, on𝑆𝑓 , (9)

𝜕𝑧𝜙 = −i𝜔𝑤, on𝑆𝑝, (10)
(

𝜙, 𝜕𝑧𝜙
)

→ 0, 𝑧→ −∞. (11)

The platforms considered herein are symmetric with respect to the 𝑥 axis, and so we follow Newman (1994) and Michele et al.
(2020) to decompose the displacement of the plate into heave, pitch and roll modes,

𝑤 = 𝜁ℎ + 𝜁𝑝𝑥+𝜁𝑟𝑦, (12)

where 𝜁ℎ, 𝜁𝑝 and 𝜁𝑟 represent the unknown complex amplitudes for the heave, pitch and roll motions. As shown later, the mode
expansion approach facilitates improved understanding of the resonance of natural modes and optimisation of power extraction
efficiency.

We proceed by expanding the velocity potential 𝜙 in diffraction and radiation components (Mei et al., 2005):

𝜙 = 𝜙𝐷 + 𝜙𝑅, 𝜙𝑅 = 𝜁ℎ𝜙ℎ + 𝜁𝑝𝜙𝑝+𝜁𝑟𝜙𝑟, 𝜙𝐷 = 𝜙𝐼 + 𝜙𝑆 , (13)

where

𝜙𝐼 = −
i𝐴𝑔
𝜔

e𝑘𝑧−i𝑘[𝑥 cos(𝛹 )+𝑦 sin(𝛹 )], in 𝛺, (14)

is the incident velocity potential, 𝛹 is the incidence angle, 𝑘 = 𝜔2∕𝑔 is the wavenumber satisfying the dispersion relation for deep-
water waves, 𝜙𝑆 is scattering velocity potential, 𝜙𝐷 is diffraction velocity potential, 𝜙𝑅 is total radiation velocity potential, and 𝜙ℎ,
𝜙𝑝, 𝜙𝑟 are heave, pitch and roll velocity potentials. The corresponding radiation and scattering boundary value problems are given by

∇2𝜙𝑆,𝑅 = 0, in 𝛺, (15)
𝑔𝜕𝑧𝜙𝑆,𝑅 − 𝜔2𝜙𝑆,𝑅 = 0, on𝑆𝑓 , (16)

𝜕𝑧𝜙𝑆 = −𝜕𝑧𝜙𝐼 , on𝑆𝑝, (17)
𝜕𝑧𝜙𝑅 = −i𝜔𝑤, on𝑆𝑝, (18)

(

𝜙𝑆,𝑅, 𝜕𝑧𝜙𝑆,𝑅
)

→ 0, 𝑧 → −∞. (19)

Finally we require the velocity potential 𝜙𝑆,𝑅 to be outgoing for  =
√

𝑥2 + 𝑦2 → ∞, i.e.,

lim
→∞

√


(

𝜕 − i𝑘
)

𝜙𝑆,𝑅 = 0, (20)

at large distance from the platform. Solution of (15)–(20) can be found via Green’s theorem and Green’s function 𝐺 as given by
Meylan (2002), Newman (1985) and Linton and McIver (2001). We obtain

𝜙𝑆,𝑅(𝑥, 𝑦, 𝑧) = ∫𝑆𝑝

(

𝜕𝑧𝜙𝑆,𝑅 − 𝑘𝜙𝑆,𝑅
)

𝐺(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′) d𝑥′d𝑦′, (21)

where

𝐺(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′) = 1
2𝜋 ∫

∞

0

𝑒𝐾𝑧𝐾𝐽0(𝐾𝑅)
(𝐾 − 𝑘)

d𝐾 = 1
2𝜋

[

1
𝑟
+ ∫

∞

0

𝑒𝐾𝑧𝑘𝐽0(𝐾𝑅)
(𝐾 − 𝑘)

d𝐾
]

,

= 1
2𝜋𝑟

− 𝑘𝑒𝑘𝑧

4
[

𝑌0(𝑘𝑅) +0(𝑘𝑅) − 2i𝐽0(𝑘𝑅)
]

− 𝑘𝑒𝑘𝑧

2𝜋 ∫

0

𝑘𝑧

𝑒−𝜏
√

𝜏2 + (𝑘𝑅)2
d𝜏, (22)

𝑟 =
√

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2 is the distance from the source point to the point of interest, 𝑅 = 𝑟|𝑧=0 =
√

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2,
𝐽0 and 𝑌0 are the Bessel functions of first and second kind and order zero, whereas 0 is the Struve function of order
zero (Gradshteyn and Ryzhik, 2007). The expression above contains explicitly the singular term 1∕𝑟 and thus facilitates the numerical
computations (Newman, 1985). We recall that the floating platform has zero draft, and so the Fredholm integral Eq. (21) does not
possess irregular frequencies (Mei et al., 2005), thus providing a computational advantage. Furthermore, solution of the equation
of motion of the plate will require evaluation of 𝜙 on the platform surface 𝑆𝑝. In this case expressions (21)–(22) give

𝜙𝑆,𝑅(𝑥, 𝑦, 0) = ∫𝑆𝑝

(

𝜕𝑧𝜙𝑆,𝑅 − 𝑘𝜙𝑆,𝑅
)

{ 1
2𝜋𝑅

− 𝑘
4
[

𝑌0(𝑘𝑅) +0(𝑘𝑅) − 2i𝐽0(𝑘𝑅)
]

}

d𝑥′d𝑦′. (23)

The Neumann condition 𝜕𝑧𝜙𝑆,𝑅 is known, therefore Eq. (23) can be resolved by dividing the surface 𝑆𝑝 into discrete panels,
and approximating the velocity potential in each panel by a constant 𝜙𝑚𝑛 and then solving numerically the corresponding non-
homogeneous linear system for 𝜙𝑚𝑛, 𝑚 = 1,… ,𝑀 , 𝑛 = 1,… , 𝑁 , where (𝑁 ×𝑀) is the number of panels, 𝜙𝑛𝑚 = 𝜙(𝑥𝑚, 𝑦𝑛), and (𝑥𝑚, 𝑦𝑛)
is the coordinate of the centre of each panel. In addition, we approximate the Green’s function for small 𝑅 when (𝑥, 𝑦) and (𝑥′, 𝑦′)
are located on the same grid element and carry out the integration analytically. By assuming a rectangular panel of size 𝛥𝑋𝛥𝑌 we
first get

 = ∫

𝑦+𝛥𝑌 ∕2

𝑦−𝛥𝑌 ∕2 ∫

𝑥+𝛥𝑋∕2

𝑥−𝛥𝑋∕2

1
𝑅
d𝑥′d𝑦′ = ∫

𝑦+𝛥𝑌 ∕2

𝑦−𝛥𝑌 ∕2
log

(

𝛥𝑋 +
√

𝛥𝑋2 + 4(𝑦 − 𝑦′)2

−𝛥𝑋 +
√

𝛥𝑋2 + 4(𝑦 − 𝑦′)2

)

d𝑦′
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= 2

[

𝛥𝑌 log

(

𝛥𝑋 +
√

𝛥𝑋2 + 𝛥𝑌 2

𝛥𝑌

)

+ 𝛥𝑋 log

(

𝛥𝑌 +
√

𝛥𝑋2 + 𝛥𝑌 2

𝛥𝑋

)]

, (24)

then recognising the dominant behaviour 𝐺 ∼ 1∕(2𝜋𝑅) for 𝑅 → 0, and using (24) we obtain Eq. (23) in discrete form

𝜙𝑚𝑛 =

2𝜋

(

𝜕𝑧𝜙𝑚𝑛 − 𝑘𝜙𝑚𝑛
)

+
𝑀
∑

𝑝=1

𝑁
∑

𝑞=1
𝐺(𝑥𝑚, 𝑦𝑛, 0; 𝑥′𝑝, 𝑦

′
𝑞)
(

𝜕𝑧𝜙𝑝𝑞 − 𝑘𝜙𝑝𝑞
)

𝛥𝑋𝛥𝑌 𝜖𝑝𝑞 , (25)

where 𝜖𝑝𝑞 = 0 if (𝑝, 𝑞) = (𝑚, 𝑛) and equal to unity otherwise. As also shown in Appendix, the converged solution was calculated for
1000 panels. Alternative approaches based on the Fourier transform (Porter, 2016; Noad and Porter, 2017; Porter, 2019) could also
be used of course. The hypersingular integral equation approach is also suitable for the similar problem of a submerged plate (Martin
and Farina, 1997; Farina and Martin, 1998; Renzi and Dias, 2012; Michele et al., 2016a; Liang et al., 2021, 2022). Once 𝜙𝑚𝑛 was
found on 𝑆𝑝 we derived the velocity potential at any point in the fluid domain using Eq. (21).

2.1. Dynamic response

In the presence of all external forces, the dynamic Eq. (1) is

𝜇𝜕𝑡𝑡𝑊 = −𝜌𝜕𝑡𝛷 − 𝜌𝑔𝑊 − 𝜈𝑃𝑇𝑂𝜕𝑡𝑊
𝐼
∑

𝑖=1
𝛿(𝑥 − 𝑥𝑖)𝛿(𝑦 − 𝑦𝑖), (26)

where 𝜌 is fluid density, 𝛿 is the Dirac Delta function and 𝜈𝑃𝑇𝑂 is PTO damping coefficient. The first term on the right-hand side
represents the dynamic pressure exerted by the wave field, the second term represents the hydrostatic pressure due to platform
displacement, and the third term denotes the damping effect of the PTO cables in (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝐼 . Using both the harmonic
expansion (6) and mode decomposition (12), we obtain after some manipulation,

− i𝜔𝜌(𝜁ℎ𝜙ℎ + 𝜁𝑝𝜙𝑝 + 𝜁𝑟𝜙𝑟) +
(

𝜁ℎ + 𝜁𝑝𝑥 + 𝜁𝑟𝑦
)

{

𝜌𝑔 − 𝜇𝜔2 − i𝜔𝜈𝑃𝑇𝑂
𝐼
∑

𝑖=1
𝛿(𝑥 − 𝑥𝑖)𝛿(𝑦 − 𝑦𝑖)

}

= i𝜔𝜌𝜙𝐷. (27)

The complex modal amplitudes 𝜁ℎ, 𝜁𝑝 and 𝜁𝑟 are found by multiplying both sides of (27) by each of the modal shape functions
(1, 𝑥, 𝑦) and then integrating over the platform surface 𝑆𝑝 (Michele et al., 2023; Newman, 1994). Assuming for simplicity a PTO
distribution that is symmetrical with respect to the 𝑥 and 𝑦 axes, and noting the 𝑥-symmetric shape of the platforms in Fig. 1, we
obtain

𝜁ℎ = 1
𝐷

{

𝐹ℎ𝐶𝑝𝑝 − 𝐹𝑝𝐶𝑝ℎ − 𝜔
{

i
[

𝐹ℎ(𝜆𝑝𝑝 + 𝜈𝑝𝑝) − 𝐹𝑝𝜆𝑝ℎ
]

+ 𝜔
[

𝐹ℎ(𝜇𝑝𝑝 + 𝐼𝑝𝑝) − 𝐹𝑝(𝜇𝑝ℎ + 𝐼𝑝ℎ)
]}}

, (28)

𝜁𝑝 =
1
𝐷

{

𝐹𝑝𝐶ℎℎ − 𝐹ℎ𝐶𝑝ℎ − 𝜔
{

i
[

𝐹𝑝(𝜆ℎℎ + 𝜈ℎℎ) − 𝐹ℎ𝜆𝑝ℎ
]

+ 𝜔
[

𝐹𝑝(𝜇ℎℎ + 𝐼ℎℎ) − 𝐹ℎ(𝜇𝑝ℎ + 𝐼𝑝ℎ)
]}}

, (29)

𝜁𝑟 =
𝐹𝑟

𝐶𝑟𝑟 − 𝜔
[

i(𝜆𝑟𝑟 + 𝜈𝑟𝑟) + 𝜔(𝜇𝑟𝑟 + 𝐼𝑟𝑟)
] , (30)

where the subscripts 𝑝, ℎ, 𝑟 refer to pitch, heave and roll,

𝐷 =
{

𝐶ℎℎ − 𝜔
[

i(𝜆ℎℎ + 𝜈ℎℎ) + (𝜇ℎℎ + 𝐼ℎℎ)𝜔
]} {

𝐶𝑝𝑝 − 𝜔
[

i(𝜆𝑝𝑝 + 𝜈𝑝𝑝) + (𝜇𝑝𝑝 + 𝐼𝑝𝑝)𝜔
]}

−
{

𝐶𝑝ℎ − 𝜔
[

i𝜆𝑝ℎ + (𝜇𝑝ℎ + 𝐼𝑝ℎ)𝜔
]}2 , (31)

is the denominator,

𝐹ℎ = i𝜔𝜌∫𝑆𝑝
𝜙𝐷 d𝑆𝑝, 𝐹𝑝 = i𝜔𝜌∫𝑆𝑝

𝑥𝜙𝐷 d𝑆𝑝, 𝐹𝑟 = i𝜔𝜌∫𝑆𝑝
𝑦𝜙𝐷 d𝑆𝑝, (32)

are the heave force and pitch and roll moments,

𝐶ℎℎ = 𝜌𝑔 ∫𝑆𝑝
d𝑆𝑝, 𝐼ℎℎ = 𝜇 ∫𝑆𝑝

d𝑆𝑝, 𝜇ℎℎ = 1
𝜔2

Re
{

i𝜔𝜌∫𝑆𝑝
𝜙ℎ d𝑆𝑝

}

, (33)

𝐶𝑝𝑝 = 𝜌𝑔 ∫𝑆𝑝
𝑥2 d𝑆𝑝, 𝐼𝑝𝑝 = 𝜇 ∫𝑆𝑝

𝑥2 d𝑆𝑝, 𝜇𝑝𝑝 =
1
𝜔2

Re
{

i𝜔𝜌∫𝑆𝑝
𝑥𝜙𝑝 d𝑆𝑝

}

, (34)

𝐶𝑝ℎ = 𝜌𝑔 ∫𝑆𝑝
𝑥 d𝑆𝑝, 𝐼𝑝ℎ = 𝜇 ∫𝑆𝑝

𝑥 d𝑆𝑝, 𝜇𝑝ℎ = 1
𝜔2

Re
{

i𝜔𝜌∫𝑆𝑝
𝜙𝑝 d𝑆𝑝

}

, (35)

𝐶𝑟𝑟 = 𝜌𝑔 ∫𝑆𝑝
𝑦2d𝑆𝑝, 𝐼𝑟𝑟 = 𝜇 ∫𝑆𝑝

𝑦2d𝑆𝑝, 𝜇𝑟𝑟 =
1
𝜔2

Re
{

i𝜔𝜌∫𝑆𝑝
𝑦𝜙𝑟 d𝑆𝑝

}

, (36)
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are the restoring forces, inertia and added masses, and

𝜈ℎℎ = 𝑁𝜈𝑃𝑇𝑂 , 𝜆ℎℎ = Im
{

i𝜌∫𝑆𝑝
𝜙ℎ d𝑆𝑝

}

, 𝜈𝑝𝑝 = 𝜈𝑃𝑇𝑂
𝑁
∑

𝑛=1
𝑥2𝑛, (37)

𝜆𝑝𝑝 = Im
{

i𝜌∫𝑆𝑝
𝑥𝜙𝑝 d𝑆𝑝

}

, 𝜆𝑝ℎ = Im
{

i𝜌∫𝑆𝑝
𝜙𝑝 d𝑆𝑝

}

, (38)

𝜈𝑟𝑟 = 𝜈𝑃𝑇𝑂
𝑁
∑

𝑛=1
𝑦2𝑛, 𝜆𝑟𝑟 = Im

{

i𝜌∫𝑆𝑝
𝑦𝜙𝑟 d𝑆𝑝

}

, (39)

represent radiation damping and PTO damping. The pitch and heave modes are coupled with one another through the non-symmetry
of the platform geometry with respect the 𝑦-axis, i.e., through non-diagonal terms related to the restoring force 𝐶𝑝ℎ, added mass
𝜇𝑝ℎ, and radiation damping 𝜆𝑝ℎ. In the configurations SET 1, SET 2b and SET 3b these terms are identically equal to zero. Note that
the roll mode is decoupled because of symmetry of both platform geometry and PTO distribution with respect the 𝑥-axis.

Corresponding eigenfrequencies are readily evaluated by equating to zero the determinants of the inertia and restoring force
matrices. This leads to the following eigenvalue condition for heave and pitch (Michele et al., 2016a)

𝜔4 [(𝜇ℎℎ + 𝐼ℎℎ)(𝜇𝑝𝑝 + 𝐼𝑝𝑝) − (𝜇𝑝ℎ + 𝐼𝑝ℎ)2
]

+ 𝐶ℎℎ𝐶𝑝𝑝 − 𝐶2
𝑝ℎ

− 𝜔2 [𝐶𝑝𝑝(𝜇ℎℎ + 𝐼ℎℎ) − 2𝐶𝑝ℎ(𝜇𝑝ℎ + 𝐼𝑝ℎ) + 𝐶ℎℎ(𝜇𝑝𝑝 + 𝐼𝑝𝑝)
]

= 0, (40)

whereas the eigenfrequency of the roll mode is readily given by

𝜔𝑟𝑜𝑙𝑙 =

√

𝐶𝑟𝑟
𝜇𝑟𝑟 + 𝐼𝑟𝑟

. (41)

Expression (40) highlights the effect of mode coupling on each eigenfrequency. In the case of a symmetric platform, the dry
modes are fully decoupled with one another, therefore expressions (28), (29) and (40) become

𝜁ℎ =
𝐹ℎ

𝐶ℎℎ − 𝜔
[

i(𝜆ℎℎ + 𝜈ℎℎ) + 𝜔(𝜇ℎℎ + 𝐼ℎℎ)
] , 𝜁𝑝 =

𝐹𝑝
𝐶𝑝𝑝 − 𝜔

[

i(𝜆𝑝𝑝 + 𝜈𝑝𝑝) + 𝜔(𝜇𝑝𝑝 + 𝐼𝑝𝑝)
] , (42)

[

𝐶ℎℎ − 𝜔2(𝜇ℎℎ + 𝐼ℎℎ)
] [

𝐶𝑝𝑝 − 𝜔2(𝜇𝑝𝑝 + 𝐼𝑝𝑝)
]

= 0, (43)

which gives the eigenfrequencies for heave and pitch

𝜔ℎ𝑒𝑎𝑣𝑒 =

√

𝐶ℎℎ
𝜇ℎℎ + 𝐼ℎℎ

, 𝜔𝑝𝑖𝑡𝑐ℎ =

√

𝐶𝑝𝑝
𝜇𝑝𝑝 + 𝐼𝑝𝑝

. (44)

For simplicity, let us now consider a symmetrical PTO system made up of four cables at the four plate corners, i.e., at 𝑥𝑖 = ±𝐿, 𝑦𝑖 =
±𝐵 for SET 1a and SET 3, 𝑥𝑖 = ±(𝐿 + 𝑙), 𝑦𝑖 = ±𝐵 for SET 1b, 𝑥𝑖 = ±𝐿, 𝑦𝑖 = ±(𝐵 + 𝑏) for SET 1c, 𝑥𝑖 = ±(𝐿 + 𝑙), 𝑦𝑖 = ±(𝐵 + 𝑏) for SET
1d, and 𝑥𝑖 = ±𝐿, 𝑦𝑖 = ±(𝐵 − 𝑏) for the remaining platform configurations SET 2. Given the mode responses (28)–(29), the average
power generated by the platform is

𝑃 = 2𝜈𝑃𝑇𝑂𝜔2
[

|

|

𝜁ℎ||
2 + (𝐿 + 𝛼𝑙)2 ||

|

𝜁𝑝
|

|

|

2
+(𝐵 + 𝛽𝑏)2 |

|

𝜁𝑟||
2
]

, (45)

where 𝛼 = 1 for SET 1b, SET 1d and equal to zero for the remaining cases; 𝛽 = 1 for SET 1c and SET 1d, 𝛽 = −1 for SET 2 and 𝛽 = 0
for the other platform configurations. Platform efficiency is represented by the capture-width ratio (Mei et al., 2005)

𝐶𝑊 = 𝑃
𝜌𝑔𝐴2𝐶𝑔𝐵

, 𝐶𝑔 =
𝜔
2𝑘
, (46)

where 𝜌𝑔𝐴2𝐶𝑔𝐵 is energy flux per platform width (2𝐵), and 𝐶𝑔 is wave group velocity in deep water. The foregoing expressions
will be used later in Section 4 to assess the power extraction efficiency of the platform.

3. Experimental set-up and validation of theoretical model

Physical model tests were undertaken on a floating rectangular plate in water waves in the COAST laboratory at the University
of Plymouth. The COAST Ocean basin is of length 35 m and width 15.5 m, and has a movable floor that accommodates an operating
depth of up to 3 m. Water waves are generated by 24 individually controlled, hinged-flap, wave-absorbing paddles.

The plate was fabricated from timber whose elastic deformation was low-amplitude in accordance with the theoretical model
developed in Section 2. To avoid strong wave interactions with the lateral basin walls, the plate width 2𝐵 = 0.86 m and plate
length 2𝐿 = 2.319 m were selected to be much smaller than the basin horizontal dimensions. The mass of the plate was determined
experimentally as 83.8 kg. The negligible plate draft of 0.042 m and 𝜇 = 42 kg m2 were again in keeping with the theoretical model
discussed in Section 2.
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Fig. 2. View of the experimental set-up, markers, cameras, and mooring lines connected to the basin walls. The rectangular barge is placed in front of the
paddles, with each mooring line located at 45 ◦ with respect to the direction of incident wave propagation 𝑥. Three of the six cameras used for motion tracking
are located at the top-right of the photograph. The five markers are indicated at the top of the barge. The empty container on top of the barge was set up in
preparation for an alternative study; it has negligible weight and does not affect the overall dynamics.

To prevent second-order plate drift, four horizontal moorings, each of length ∼10.3 m were connected to vertical beams fixed
to the basin walls (see Fig. 2). The mooring line was set at an angle of 45 ◦ with respect to the incident wave direction, permitting
symmetric pitch and heave response. Each mooring was fitted with an end spring of stiffness 596 N m−1 that avoided the occurrence
of impulsive forces (unaccounted for in the theoretical model). As is shown in the next subsection, we observed plate vertical
oscillations of the order 𝑂(1) cm; hence, given the length of the mooring line, we get that the effect of mooring forces on heave and
pitch can be neglected at leading order. This finding is in agreement with our theoretical model.

Plate movement was recorded by a motion tracking device developed by QUALISYS to an accuracy of 𝑂(10−3) m. Plate
displacements were sampled at a frequency of 128 Hz, and response amplitude operators for heave and pitch then determined
using MATLAB. Fig. 2(b) shows the location of three of the six cameras placed above the basin to capture the three-dimensional
positions of markers. Each marker comprised a 30 mm diameter polystyrene sphere covered with retro-reflective tape and was
rigidly connected to the top surface of the plate. Plate motion was excited by incident waves whose direction was parallel to the
𝑥-axis in order to produce a symmetric response in heave and pitch. A total of 5 markers were fixed to the plate, all of which were
visible at all times to the six cameras.

3.1. Test summary

A series of tests were undertaken to investigate synchronous plate responses to monochromatic regular waves of constant
amplitude 𝐴 = 0.02 m. Data were collected for different fundamental wave frequencies in the range 𝑓 ∈ [0.3; 1.5] Hz with frequency
increment 𝛥𝑓 = 0.05 Hz. The basin water depth was set to ℎ = 3 m corresponding to deep-water conditions throughout the wave
frequency range considered. Fourier analysis was used to derive the experimental response amplitude operators (RAOs) from the
measured plate-displacement time series. Following Mei (1997) we utilise the Fourier series expansion,

𝜓 =
𝑎0
2

+
∞
∑

𝑛=1

(

𝑎𝑛 cos
[

𝑛𝜋(2𝑡 − 𝑡2 − 𝑡1)
𝑡2 − 𝑡1

]

+ 𝑏𝑛 sin
[

𝑛𝜋(2𝑡 − 𝑡2 − 𝑡1)
𝑡2 − 𝑡1

])

, (47)

where 𝜓 refers to the recorded time series of displacement in heave or pitch, and the parameters (𝑡1, 𝑡2) define the start and end of
the recorded time interval. The Fourier coefficients 𝑎𝑛, 𝑏𝑛, for 𝑛 ≥ 1, represent plate oscillations and are evaluated from the integral
relationships,

𝑎𝑛 =
2

𝑡2 − 𝑡1 ∫

𝑡2

𝑡1
𝜓(𝑡) cos

[

𝑛𝜋(2𝑡 − 𝑡2 − 𝑡1)
𝑡2 − 𝑡1

]

d𝑡, (48)

𝑏𝑛 =
2

𝑡2 − 𝑡1 ∫

𝑡2

𝑡1
𝜓(𝑡) sin

[

𝑛𝜋(2𝑡 − 𝑡2 − 𝑡1)
𝑡2 − 𝑡1

]

d𝑡. (49)

The generalised raw response amplitude spectrum is given by

𝑛 =
√

𝑎2𝑛 + 𝑏2𝑛. (50)

The plate response at leading order is synchronous with the incident wave frequency; hence the 𝑛th component is extracted from
the amplitude spectrum (50), such that 𝑛 = ⌊𝑓 (𝑡2 − 𝑡1)⌋, where 𝑓 is the assigned incident wave frequency and ⌊ ⌋ denotes the closest
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Fig. 3. Response amplitude operator versus fundamental incident wave frequency for (a) heave, and (b) pitch. Solid lines show the analytical solutions (28)–(29),
and symbols represent the experimental results.

Fig. 4. Normalised second-harmonic response contributions versus fundamental incident wave frequency for (a) heave, and (b) pitch.

integer. We consider a time interval of 80 s from 𝑡1 = 80 s to 𝑡2 = 160 s, during which steady state has been reached and transient
effects from the initial wave front and trailing waves can be neglected. Experimental values of the heave and pitch RAOs were
evaluated by dividing the spectral components by the recorded incident wave amplitude

Fig. 3 depicts the measured and theoretical heave and pitch response amplitude operators as functions of fundamental wave
frequency. Bearing in mind the limitations of the theoretical model, good agreement is achieved between (28) and (29) and the
corresponding experimental values denoted by red circles. This indicates that the theoretical model properly captures the overall
heave and pitch behaviour of the rigid plate in waves.

We now evaluate the plate second-harmonic response in monochromatic waves. Using a perturbation approach, nonlinear terms
lead to contributions of order 𝑂(𝐴𝑘) and smaller (Mei et al., 2005). In our tests 𝑂(𝐴𝑘) ≪ 1, and so the second-harmonic responses
are likely to be less pronounced than the linear synchronous behaviour. Following Michele et al. (2023), we use Fourier analysis
to obtain the second-harmonic response component for incident waves of index 𝑛 = ⌊2𝑓 (𝑡2 − 𝑡1)⌋. Herein, the response amplitude
operators of the second subharmonic in heave and pitch are denoted 𝜁ℎ,𝑠𝑢𝑏 and 𝜁𝑝,𝑠𝑢𝑏.

Fig. 4 displays the measured second-harmonic RAOs as functions of incident wave frequency. The second-harmonic responses
in heave and pitch are significantly smaller than the corresponding linear responses depicted in Fig. 3. This is because the second-
harmonics are at most 𝑂(𝐴𝑘) order effects and the wave steepness is very small in this case. Even so, as shown in Fig. 4(a), the second
harmonic component can be important as evidenced by |𝜁ℎ,𝑠𝑢𝑏|∕𝐴 approaching ∼0.12 for incident wave frequency 𝑓 = 0.55 Hz. This
peak warrants further theoretical investigation through weakly nonlinear approaches.

4. Results and discussion

In this section we examine the effects of plate geometry, PTO coefficient, incident wave direction and wave frequency on the
hydrodynamic behaviour and energy extraction efficiency of the floating platforms shown in Fig. 1. For brevity, we consider the
following fixed parameters: wave amplitude 𝐴 = 1 m, water density 𝜌 = 1000 kg m−3, platform mass per unit area 𝜇 = 44 kg m−2,
and platform length 𝐿 = 5 m. The value of 𝜇 is the same as adopted by Michele et al. (2024, 2020) enabling comparison against
their results.
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Table 1
First eigenfrequencies (rad/s) in heave, pitch and roll for plate width 𝐵 = [𝐿∕2;𝐿; 2𝐿]. 𝐵 → ∞ corresponds with
the two-dimensional model of Michele et al. (2020).
Plate width Heave Pitch Roll

𝐵 = 𝐿∕2 2.40 (rad/s) 2.77 (rad/s) 3.35 (rad/s)
𝐵 = 𝐿 1.92 (rad/s) 2.51 (rad/s) 2.51 (rad/s)
𝐵 = 2𝐿 1.72 (rad/s) 2.41 (rad/s) 1.99 (rad/s)
𝐵 → ∞ 1.63 (rad/s) 2.34 (rad/s) 0 (rad/s)

Fig. 5. Capture-width ratio 𝐶𝑊 as a function of angle of incidence 𝛹 , 𝑘𝐿 and PTO coefficient 𝜈𝑝𝑡𝑜 for the single plate case SET 1a. Plate length is 𝐿 = 5 m,
and: (a) 𝐵 = 𝐿∕2, 𝛹 = 0 rad, (b) 𝐵 = 𝐿, 𝛹 = 0 rad, (c) 𝐵 = 2𝐿, 𝛹 = 0 rad, (d) 𝐵 = 𝐿∕2, 𝛹 = 𝜋∕4 rad, (e) 𝐵 = 𝐿, 𝛹 = 𝜋∕4 rad, and (f) 𝐵 = 2𝐿, 𝛹 = 𝜋∕4 rad.

4.1. SET 1a: Single rectangular plate

We first examine the effect of the relative horizontal dimensions of a single rectangular plate on its power extraction efficiency.
We consider three values of plate width 𝐵 = [𝐿∕2;𝐿; 2𝐿], for which the eigenfrequencies are evaluated by solving (40) and (41).
Table 1 lists the numerical values of the eigenfrequencies, where 𝐵 → ∞ refers to values from the two-dimensional model developed
by Michele et al. (2020). It can be seen that the eigenfrequencies tend to those of the two-dimensional case for increasing 𝐵∕𝐿 ratio.

Fig. 5 presents contour plots of capture-width ratio (46) as a function of 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for two values of wave
incidence angle 𝛹 = (0, 𝜋∕4) rad. It can be seen that 𝐶𝑊 invariably has a single visible peak due to the presence of two resonant
frequencies. This maximum is shifted towards frequencies smaller than those listed in Table 1 because of PTO and radiation damping
effects, in a similar fashion to a damped harmonic oscillator. The absolute maximum of 𝐶𝑊 decreases and the efficiency bandwidth
grows as the plate width increases. Therefore potential positive benefits on reduction of construction costs are possible because
the economic viability and lifespan of WECs depend also on their size. This behaviour is different from that of a hinged vertical
plate oscillating in pitch, where increasing the width does not change sensibly 𝐶𝑊 (Renzi and Dias, 2013). Therefore, systematic
alteration of the plate dimensions and configuration during the analysis stage allows designers to optimise the plate WEC for different
broadband sea-states and to maximise corresponding energy extraction efficiency while reducing cost. Even so, designers should
consider the effect of plate width on plate structural resistance, which could penalise the overall behaviour of an actual device in
the open ocean. Larger plate dimensions induce greater wave loads and may render the device less durable.

In the case of oblique waves (Figs. 5(d)–5(f)), we note that for 𝐵 < 𝐿 the capture-width ratio tends to improve and the generated
power by the plate increases. On the contrary, for 𝐵 ≥ 𝐿, oblique waves are associated with lower energy production as has also
been previously shown for arrays of OWSCs (Michele et al., 2016b). This is primarily because the platform exposure to incident
waves depends on 𝛹 .
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Fig. 6. Exciting and radiation force components plotted against 𝑘𝐿 for a rectangular plate with 𝐵∕𝐿 = [1∕2; 1; 2;∞]. (a) heave exciting force, pitch and roll
exciting moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d)
heave, pitch and roll radiation damping.

Fig. 6 shows the behaviour of non-dimensional exciting forces/moment, added mass/inertia and radiation damping, defined as

𝐹 ′
ℎ =

𝐹ℎ
𝐴𝑝𝜌𝑔𝐴

, 𝐹 ′
𝑝 =

𝐹𝑝
4𝐵(𝐿 + 𝑙𝛼)2𝜌𝑔𝐴

, 𝐹 ′
𝑟 =

𝐹𝑟
4𝐿(𝐵 + 𝑏𝛾)2𝜌𝑔𝐴

𝜇′ℎℎ =
𝜇ℎℎ𝜔2

4𝐵𝐿𝜌𝑔
, 𝜇′𝑝𝑝 =

𝜇𝑝𝑝𝜔2

𝜌𝑔4𝐵(𝐿 + 𝑙𝛼)2
, 𝜇′𝑟𝑟 =

𝜇𝑟𝑟𝜔2

𝜌𝑔4𝐿(𝐵 + 𝑏𝛾)2
,

𝜆′ℎℎ =
𝜆ℎℎ𝜔
4𝐵𝐿𝜌𝑔

, 𝜆′𝑝𝑝 =
𝜆𝑝𝑝𝜔

4𝐵(𝐿 + 𝑙𝛼)2𝜌𝑔
, 𝜆′𝑟𝑟 =

𝜆𝑟𝑟𝜔
4𝐿(𝐵 + 𝑏𝛾)2𝜌𝑔

, (51)

versus non-dimensional 𝑘𝐿 for 𝐵 = [𝐿∕2, 𝐿, 2𝐿] and 𝐵 → ∞, where 𝛾 = 1 for SET 1c and SET 1d and equal to zero for all the other
cases considered. In defining (51), 𝐴𝑝 is used to indicate the platform wetted area. The hydrodynamic forces on the two-dimensional
plate are calculated in a similar fashion by dividing the denominators in (51) by 2𝐵, i.e., by reference to a plate of unit width. We
note that the hydrodynamic heave force 𝐹ℎ decreases with wave frequency, and tends to the hydrostatic value 𝜌𝑔𝐴𝑝 as 𝜔 → 0. The
pitch force tends to zero as the wave frequency tends to zero and has a maximum at 𝑘𝐿 ≃ 𝜋∕2, i.e., when the wavelength is four
times the plate length 𝐿. As 𝐵∕𝐿 increases, the curves approach the two-dimensional results of Michele et al. (2020). Furthermore
we note that for 𝛹 = 𝜋∕4 rad, there is an increase in heave force for 𝐵 = 𝐿∕2 and decrease for 𝐵 = 2𝐿. This justifies the behaviour
of wave energy production shown in Fig. 5 and highlights the role of the hydrodynamic forces/moments 𝐹ℎ,𝑝,𝑟 on energy extraction
efficiency. Also, the pitching moment obviously decreases with 𝛹 , whereas the roll moment differs from zero only for 𝛹 > 0 and the
results are comparable in order of magnitude with the pitching moment in the case 𝛹 = 𝜋∕4 rad. We point out that similar results
were obtained by Porter (2016), further validating the present model.

To further examine the hydrodynamics of single rectangular plates in waves, we consider shaded spatial distributions of the
normalised amplitude of diffracted free surface elevation |𝜂𝐷|∕𝐴, where 𝜂𝐷 = i𝑘∕𝜔(𝜙𝐼 + 𝜙𝑆 )𝑧=0. Here, the subplots in Fig. 7 refer
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Fig. 7. Contour plots of the spatial distribution of the non-dimensional modulus of diffracted wave elevation for an incident wave of unit amplitude 𝐴 with
𝑘𝐿 = 4, for: (a) 𝐵∕𝐿 = 1∕2, 𝛹 = 0 rad, (b) 𝐵∕𝐿 = 1, 𝛹 = 0 rad, (c) 𝐵∕𝐿 = 2, 𝛹 = 0 rad, (d) 𝐵∕𝐿 = 1∕2, 𝛹 = 𝜋∕4 rad, (e) 𝐵∕𝐿 = 1, 𝛹 = 𝜋∕4 rad, and (f) 𝐵∕𝐿 = 2,
𝛹 = 𝜋∕4 rad. The plate is shaded black.

to 𝐵 = [𝐿∕2;𝐿; 2𝐿] and 𝛹 = (0, 𝜋∕4) rad. The axes are normalised with respect to the length 𝐿 such that the plate (shaded black)
occupies the location |𝑥∕𝐿| < 1, |𝑦∕𝐵| < 1. Plots are shown for incident waves of frequency parameter 𝑘𝐿 = 4 propagating in the
direction 𝑥 → −∞. Figs. 7(a)–7(c) show clear evidence of reflected waves and a shadow zone downwave of the plate. Maximum
wave amplitude occurs at the front of the plate and is close to twice the incident wave amplitude, as in the case of a perfectly
reflecting wall. This result becomes even more obvious at larger values of 𝐵∕𝐿 as shown in Fig. 7(c). Figs. 7(d)–7(f) show the
case of oblique incident waves. We note that the shadow zone rotates with the incident wave direction, whereas maximum wave
amplitude occurs adjacent to the longer plate side. Also, in the leading edge region the diffracted waves have amplitude close
to unity because of weak wave reflection. Similar results were obtained using the analytical model developed by Porter (2016).
Specifically, our Figs. 7(b) and 7(e) coincide with Porter’s Fig. 3(a) and (b), again validating the present theoretical model.

4.2. SET 1b and SET 1c: Two rectangular plates

We first consider the case SET 1b which consists of two rectangular plates rigidly connected to one another. We assume 𝐵 = 𝐿
and vary the distance between the plates 2𝑙. The entire platform therefore has dimension 4𝐵𝐿. Figs. 8(a)–8(b) show the surface
plots of 𝐶𝑊 as functions of 𝑘𝐿 and PTO coefficient for two separation distances 𝑙 = [𝐿; 2𝐿] and 𝛹 = 0 rad. Both cases exhibit several
resonant peaks and large bandwidth. The peaks are related to resonance of partially standing water waves in the gap between the
rectangular plates, similar to moonpool resonance (Molin, 2001; Zhao et al., 2022), whose frequency can be calculated from the
dispersion relation in deep water, i.e., 𝜔 =

√

𝑛𝜋𝑔∕(2𝑙), 𝑛 = 1,… ,∞, or equivalently 𝑘𝐿 = 𝑛𝜋𝐿∕(2𝑙). Furthermore, by comparing
Figs. 8(a)–8(b) against the results for the square WEC of area 4𝐵𝐿 shown in Fig. 5(b), it can be seen that the maximum efficiency
value improves although the results depicted in Figs. 8(a)–8(b) are spiky and less regular. Figs. 8(c)–8(d) represent the behaviour
of 𝐶𝑊 for the same platforms but different incident wave angle 𝛹 = 𝜋∕4 rad. The overall behaviour is similar to Figs. 8(a)–8(b),
except for the major peak in Fig. 8(d). The presence of the 𝐶𝑊 peaks is explained by analysing the hydrodynamic profiles with
𝑘𝐿 shown in Fig. 9. The 𝐹 ′

ℎ, 𝐹 ′
𝑝 and 𝐹 ′

𝑟 curves contain peaks at the resonant frequencies seen in 𝐶𝑊 , implying that the diffracted
wave field governs the overall efficiency. Similarly, the sharp peaks in added mass and radiation damping depicted in Figs. 9(c)–
9(d) occur at similar frequencies because of moonpool resonance between the plates. Interestingly, as shown in Fig. 9(b), we note
that the maxima/minima for pitch moments coincide with the minima/maxima of roll moments. This is because of the different
standing-wave pattern between the plates.

Fig. 10 shows the spatial distribution of the diffracted free surface elevation |𝜂𝐷|∕𝐴 when 𝑘𝐿 = 4 for 𝑙 = [𝐿; 2𝐿] and 𝛹 = (0, 𝜋∕4)
rad. Again significant wave reflection occurs at the platform front and a shadow zone exists behind the second plate for 𝛹 = 0
rad. The maximum wave amplitude is about twice the incident wave amplitude, and is hardly affected by increasing distance 𝑙.
Similarly, the shadow zone is unaltered by the choice of 𝑙. Between the plates where |𝑥| < (𝑙 + 𝐿), a quasi-standing wave pattern
occurs in |𝜂𝐷| with three peaks for 𝑙 = 𝐿 (see Fig. 10(a)) and five peaks for 𝑙 = 2𝐿 (see Fig. 10(b)). However, the amplitude of these
standing waves is always smaller than those localised at the platform front area because of the shadow effect from the first plate. A
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Fig. 8. Capture-width ratio 𝐶𝑊 as a function of 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for a two-plate platform (SET 1b). Plate width is 𝐵 = 𝐿: (a) 𝑙 = 𝐿, 𝛹 = 0 rad,
(b) 𝑙 = 2𝐿, 𝛹 = 0 rad, (c) 𝑙 = 𝐿, 𝛹 = 𝜋∕4 rad, and (d) 𝑙 = 2𝐿, 𝛹 = 𝜋∕4 rad. In the case of incident waves propagating along 𝑥, peaks are close to resonant
frequencies 𝑘𝐿 = 𝑛𝜋𝐿∕(2𝑙), 𝑛 = 1,… ,∞.

significantly different pattern occurs for oblique waves as depicted in Figs. 10(c)–10(d). The plate on the upwave side experiences
diffracted wave amplitude similar to that in Fig. 7(e), whereas between the plates a strong diffracted wave amplitude occurs as
oblique waves penetrate this region which are capable of triggering resonant patterns. This is obvious in Fig. 10(c), whereas for
wider distance 𝑙 this phenomenon diminishes.

Let us now consider the configuration SET 1c, i.e. a platform made of two plates of width 𝐵 = 𝐿, rigidly connected to one
another and separated by horizontal distance 2𝑏. Fig. 11(a) depicts the behaviour of 𝐶𝑊 with 𝑘𝐿 and PTO coefficient for the case
𝑏 = 𝐿, and Fig. 11(b) shows the behaviour of 𝐶𝑊 for larger separation distance 𝑏 = 2𝐿. The platform attains great efficiency in
the range 𝑘𝐿 = 1 − 2 and 𝜈𝑃𝑇𝑂 = 104 − 106 kg s−1, especially when compared with the square plate case in Fig. 5(b). This means
that maintaining the same wetted area 4𝐵𝐿 while changing orientation of the two-plate system, it is possible to increase the power
extraction efficiency because of constructive interactions between the plates. Furthermore we note the presence of minor peaks at
𝑘𝐿 > 2. As previously depicted in Fig. 6, these peaks correspond to the resonance of standing waves in the gap between the plates.
In this case, the waves are symmetrical with respect to the 𝑥 axis and their frequency is given by 𝜔 =

√

𝑛𝜋𝑔∕𝑏, 𝑛 = 1,… ,∞. Note
that SET 1c is merely SET 1b rotated by 90 degrees, and so the capture-width ratio for 𝛹 = 𝜋∕4 rad is the same as in Figs. 8(c)–8(d).

Fig. 12 shows the behaviour of hydrodynamic force parameters versus 𝑘𝐿. The behaviour in pitch is not as spiky as in heave, or
as in Fig. 9. This is because the pitch motion does not generate large waves that propagate along the 𝑦 axis, thus avoiding standing
wave resonances. Hence, the behaviour is similar to that of the single plate analysed in the previous section. Conversely, the heave
motion triggers standing wave resonance between the plates, causing the spiky signatures in 𝐹 ′

ℎ, 𝜇
′
ℎℎ and 𝜆′ℎℎ with 𝑘𝐿. By comparing

Fig. 12 against Fig. 9 we note that the pitch hydrodynamic force corresponds with the roll hydrodynamic force because this platform
is simply equal to platform SET 1b subject to 90 degrees rotation.

Fig. 13 depicts the non-dimensional diffracted wave amplitude for the foregoing pair of parallel plates and fixed non-dimensional
wave number 𝑘𝐿 = 4. For plates with relatively small separation distance 𝑏 = 𝐿, strong resonant free-surface behaviour occurs in
the gap between the plates, as evidenced by the three peaks of amplitude |𝜂𝐷| ∼ 2.5𝐴 in Fig. 13(a). Downwave of the plates, in the
region 𝑥 < −𝐿, |𝑦| < 𝐿, the amplitude of the diffracted wave amplitude is close to that of its incident counterpart, i.e., |𝜂𝐷| ∼ 𝐴.
This means that incident waves can easily penetrate between the parallel plates and bypass the floating structure almost unaffected.
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Fig. 9. Hydrodynamic force and moment components with respect to 𝑘𝐿 for SET 1b with 𝐵 = 𝐿 and 𝑙 = [𝐿, 2𝐿]: (a) heave exciting force, pitch and roll exciting
moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d) heave, pitch
and roll radiation damping.

Different behaviour occurs when the gap distance 𝑏 is larger, as shown in Fig. 13(b). In this case five significant peaks occur in
the diffracted wave amplitude between the plates and for 𝑥 < 𝐿; however the standing wave resonant mechanism seems to have
weakened because of the greater 𝑏. In front of the platform for 𝑥 > 𝐿, a number of wave rays have been generated, the number
depending on 𝑏 and corresponding standing wavelengths. Here, three and five wave rays separated by constant amplitude |𝜂𝐷| ∼ 𝐴
are obtained for 𝑏 = [𝐿, 2𝐿]. A shadow zone has formed behind both plates forming a ∼20◦ angle with the 𝑥 axis. As before, the
diffracted wave patterns for 𝛹 = 𝜋∕4 rad are not presented here because they are the same as those shown in Figs. 10(c)–10(d).

4.3. SET 1d: Four rectangular plates

In this section we investigate SET 1d, consisting of an array of four rectangular plates separated by distances 𝑙 and 𝑏 and rigidly
connected to each other. For brevity we consider the case when 𝐵 = 𝐿, which represents a platform comprising four square plates.
Fig. 14(a) displays the 𝐶𝑊 behaviour for the same gap distances 𝑏 = 𝑙 = 𝐿. High efficiency is achieved at 𝑘𝐿 ∼ 1.5 and a sequence
of local maxima for 𝑘𝐿 > 2 driven by resonant standing waves in the gaps between the plates. Here, the frequency bandwidth is
large, highlighting the beneficial effect of decomposing the platform into subsystems. Fig. 14(b) presents the corresponding results
for wider gap spacing 𝑏 = 𝑙 = 2𝐿. Although the 𝐶𝑊 behaviour is similar to that depicted in Fig. 14(a), it exhibits more peaks due
to the increasing number of standing wave modes in the gaps. Figs. 14(c)–14(d) show the case of oblique incident waves 𝛹 = 𝜋∕4
rad for the same platforms. We note that maximum value of efficiency improves because of the large hydrodynamic force in heave;
however the peaks tend to narrow as their number reduces causing the overall performance to deteriorate.

Fig. 15 depicts the behaviour of the exciting force, added mass and radiation damping parameters in heave, pitch and roll with
non-dimensional wave number. The results are similar to that in Fig. 9 for the two-plate case SET 1b. The main difference is the
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Fig. 10. Contour plots of the spatial distribution of the non-dimensional modulus of diffracted wave elevation for SET 1b. Parameters are 𝑘𝐿 = 4, 𝐵 = 𝐿, and:
(a) 𝑙 = 𝐿, 𝛹 = 0 rad, (b) 𝑙 = 2𝐿, 𝛹 = 0 rad, (c) 𝑙 = 𝐿, 𝛹 = 𝜋∕4 rad, and (d) 𝑙 = 2𝐿, 𝛹 = 𝜋∕4 rad. The two-plate platform is shaded black.

Fig. 11. Capture-width ratio 𝐶𝑊 as a function of 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for a two-plate platform (SET 1c). Plate width is 𝐵 = 𝐿. (a) 𝑏 = 𝐿 and (b) 𝑏 = 2𝐿.
Peaks are close to resonant standing-wave frequencies.

increased number of spikes for 𝜇𝑝𝑝 and 𝜆𝑝𝑝 in the four-rectangular-plate case, even though the magnitude is essentially the same.
This indicates that the overall hydrodynamic properties are primarily influenced by the gap distance 2𝑙.

Fig. 16 shows the corresponding diffracted wave field. When 𝛹 = 0 rad there is some similarity with the results in Fig. 13. In
front of the platform 𝑥 > (𝐿 + 𝑙) the behaviour is very similar, in terms of both magnitude and wavy pattern. The standing wave
pattern in the gap between the plates at first row |𝑦| < 𝑏, 𝑥 > 0 is very similar to that presented in Fig. 13. The main differences
occur in the region 𝑥 < 0, due to the influence of the second row of plates on the local wave hydrodynamics. The results obtained for
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Fig. 12. Hydrodynamic force and moment components with respect to 𝑘𝐿 for SET 1c with 𝐵 = 𝐿, and 𝑏 = [𝐿, 2𝐿]: (a) heave exciting force, pitch and roll
exciting moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d)
heave, pitch and roll radiation damping.

Fig. 13. Contour plots of the spatial distribution of the non-dimensional modulus of diffracted wave elevation for SET 1c. Parameters are 𝑘𝐿 = 4, 𝐵 = 𝐿, and :
(a) 𝑏 = 𝐿, and (b) 𝑏 = 2𝐿. The two-plate platform is shaded black.

oblique waves and distance 𝑏 = 𝑙 = 𝐵 shown in Fig. 16(c) are characterised by strong standing wave interaction and the existence
of oblique wave rays. We also note the presence of a wide shadow zone in the downwave side. For wider plate distance we obtain
the wave pattern in Fig. 16(d) and note a shadow zone between the plates. This is significantly different from the previous case;
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Fig. 14. Capture-width ratio 𝐶𝑊 as a function of 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for a four-plate platform (SET 1d). Plate parameters are 𝐵 = 𝐿: (a) 𝑏 = 𝑙 = 𝐿,
𝛹 = 0 rad, (b) 𝑏 = 𝑙 = 2𝐿, 𝛹 = 0 rad, (c) 𝑏 = 𝑙 = 𝐿, 𝛹 = 𝜋∕4 rad, and (d) 𝑏 = 𝑙 = 2𝐿, 𝛹 = 𝜋∕4 rad.

hence the parameters 𝑏 and 𝑙 play a significant role because they can induce resonance at certain incident wave frequencies. This
is crucial for structural purposes because large waves correspond to high amplitude forces.

4.4. SET 2: T-shaped and cross-shaped platform

We now analyse the behaviour of a T-shaped and cross-shaped platform described by SET 2 (see Fig. 1). To make comparisons
against the cases analysed in the previous section we set the plate width 𝐵 = 𝐿 and indentation width 𝑙 = 𝑏 = 𝐿∕2. Fig. 17 shows the
capture width ratio 𝐶𝑊 as a function of non-dimensional wave number and PTO coefficient for the foregoing cases. Figs. 17(a)–17(c)
refer to 𝛹 = 0 rad, whereas Figs. 17(d)–17(f) depict the case of oblique incident waves where 𝛹 = 𝜋∕4 rad. We note that for 𝛹 = 0
rad, by translating the indentation at the platform front we can increase the efficiency bandwidth up to great frequencies. This
configuration corresponds to the case SET 2c as shown in Fig. 17(c). The opposite occurs in the case of oblique waves, where SET
2a is the most efficient configuration. At low frequency there is no significant difference in terms of efficiency, and all the cases
behave in the same way for assigned 𝛹 . This is because the plate edge in 𝑥 = 𝐿 acts as a barrier that strongly deflects water waves
of small wavelength in |𝑦| > 𝐵. Conversely, long waves are unaffected by the size of platform indentation, and the power extraction
efficiency is unchanged.

Fig. 18 illustrates the corresponding dependence of exciting force, added-mass, and radiation damping in heave and pitch on
the non-dimensional wave number. Figs. 18(a)–18(b) show that for 𝑘𝐿 < 2 we obtain the same value of heave force 𝐹 ′

ℎ, because of
the large incident wavelength and small influence of plate indentations. The pitch exciting force 𝐹 ′

𝑝 tends to a non-zero value for
small 𝑘𝐿 because of non-symmetry of the platform geometry for SET 2a and SET 2c. In other words, the static equilibrium position
of the platform does not coincide with the horizontal plane 𝑧 = 0. We also note that for 𝛹 = 0 rad, the heave force results are
larger for SET 2c, whereas for oblique waves, 𝐹 ′

ℎ is maximised for SET 2a. This explains the dependence of 𝐶𝑊 on incident wave
direction shown in Fig. 17. The behaviour of the added mass and radiation damping appears to be similar for all configurations,
and is exactly the same for the T-shaped platforms because of symmetry of radiated wave field, whereas for SET 2b, 𝜆𝑝𝑝 and 𝜇𝑝𝑝
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Fig. 15. Hydrodynamic force and moment components with respect to 𝑘𝐿 for SET 1d with 𝐵 = 𝐿, and 𝑏 = 𝑙 = [𝐿, 2𝐿] : (a) heave exciting force, pitch and roll
exciting moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d)
heave, pitch and roll radiation damping.

coincide with 𝜆𝑟𝑟 and 𝜇𝑟𝑟, again, because of symmetry of platform geometry and consequent radiated waves pattern. It should be
noted that all the plots are very similar to those obtained for the single square plate in Fig. 6, especially at small frequencies. This
again implies similar capture-width ratio values, as found earlier in this section.

We now turn to the diffracted wave field depicted in Fig. 19 for 𝑘𝐿 = 4. At the downwave side, independently of incident
wave direction, the behaviour of |𝜂𝐷| is very similar in all cases. Conversely, in the region close to the plate front we observe some
important differences due to the indentation position. We remark that we are assuming 𝑘𝐿 = 4, i.e., the wavelength is comparable to
the platform size, implying that incident waves may interact strongly with the indentation geometry. Specifically, Fig. 19(a) shows
the presence of a single wave ray of amplitude |𝜂𝐷|∕𝐴 ∼ 1.6 in the region 𝑥 > 𝐿. Surprisingly, the cross-shaped platform case of
Fig. 19(b) does not scatter significant energy in the region 𝑦 = 0, 𝑥 > 𝐿 but instead large-amplitude waves propagate at ∼ 45◦.
Conversely, the behaviour of diffracted waves in the case of the T-shaped platform depicted in Fig. 19(c) resembles that depicted
previously in Fig. 7(b) for a single square plate. For 𝛹 = 𝜋∕4 rad and SET 2a, we obtain the wave pattern shown in Fig. 19(a).
Interestingly, a large diffracted wave amplitude |𝜂𝐷|∕𝐴 ∼ 2.5 occurs close to the platform corner exposed to incoming waves. The
cross-shaped platform exhibits similar behaviour, with the region at the plate front in Fig. 19(f) having some similarity with the
upwave side depicted in Fig. 7(e).

4.5. SET 3: C-shaped and I-shaped platforms

We now investigate the behaviour of platforms belonging to the configurations SET 3. For comparison against previous cases,
we fix the base width to be 𝐵 = 𝐿 and indentation lengths 𝑏 = 𝑙 = 𝐿∕2, and consider 𝛹 = (0, 𝜋∕4) rad.

Fig. 20(a) presents contours of the capture-width ratio in the 𝑘𝐿-PTO coefficient space for the case SET 3a. High efficiency
is achieved at 𝑘𝐿 ∼ 2 and significant bandwidth. Peak capture-width ratio is 𝐶𝑊 ∼ 0.7, comparable with value obtained for the
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Fig. 16. Contour plots of the non-dimensional modulus of diffracted wave elevation for SET 1d. Parameters are 𝑘𝐿 = 4, 𝐵 = 𝐿 and: (a) 𝐵 = 𝑏 = 𝑙, 𝛹 = 0 rad,
(b) 𝐵 = 𝑏∕2 = 𝑙∕2, 𝛹 = 0 rad, (c) 𝐵 = 𝑏 = 𝑙, 𝛹 = 𝜋∕4 rad, and (d) 𝐵 = 𝑏∕2 = 𝑙∕2, 𝛹 = 𝜋∕4 rad. The four-plate platform is shaded black.

Fig. 17. Capture-width ratio 𝐶𝑊 as a function of angle of incidence 𝛹 , 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for 𝐵 = 𝐿, 𝑏 = 𝑙 = 𝐿∕2 and configurations: (a) SET 2a,
𝛹 = 0 rad, (b) SET 2b, 𝛹 = 0 rad, (c) SET 2c, 𝛹 = 0 rad, (d) SET 2a, 𝛹 = 𝜋∕4 rad, (e) SET 2b, 𝛹 = 𝜋∕4 rad, (f) SET 2c, 𝛹 = 𝜋∕4 rad.
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Fig. 18. Hydrodynamic force and moment components with respect to 𝑘𝐿 for SET 2 with 𝐵 = 𝐿, and 𝑏 = 𝑙 = 𝐿∕2 : (a) heave exciting force, pitch and roll
exciting moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d)
heave, pitch and roll radiation damping.

square case in Fig. 5(b). It should be noted however that although this C-shaped platform has smaller wetted area, we are able to
attain similar power extraction by reducing the platform size and mitigating the consequent economic impact, which is crucial for
optimising the design of such WECs. Figs. 20(b)–20(c) show the results obtained for an I-shaped symmetric platform (SET 3b) and
a C-shaped platform (SET 3c) with indentation localised at the plate downwave side. In these cases the power extraction efficiency
tends to decrease, even though the bandwidth improves. A similar trend is shown in Fig. 17 for different T-shaped platforms.
Figs. 20(d)–20(f) represent the capture-width ratio for the same configurations but 𝛹 = 𝜋∕4 rad. We note that the overall efficiency
is the same in each case except SET 3a at very large frequencies.

Fig. 21 shows the hydrodynamic force parameters as a function of the dimensionless wave number 𝑘𝐿. At low values of 𝑘𝐿 the
behaviour of the force parameters is similar to that in Fig. 18; however, appreciable differences appear at large 𝑘𝐿. Moreover, we
note that the C-shaped platforms (SET 3a and SET 3c) possess the same added mass and radiation damping which are independent
of platform orientation with respect to the incident wave field. Therefore differences in power extraction efficiency are primarily
due to differences in the exciting forces.

Finally, Fig. 22 presents the spatial distribution of the diffracted wave amplitude. Note that when the indentation is located at
the upwave side (see Figs. 22(a)–22(d)) and at the middle (see Figs. 22(b)–22(e)), it is possible to focus waves at the platform front.
Here, maximum of the diffracted wave amplitude can be |𝜂𝐷|∕𝐴 ∼ 2.5, larger than in all the previous cases except for the two-plate
and four-plate configurations in figs. 13(a)–16(a). The shadow zone behind the platform remains similarly unchanged, and rotates
with the incident wave direction, confirming that the indentation position does not affect the diffracted wave field in the downwave
region.

5. Conclusions

This paper describes a theoretical model of the wave-response behaviour of a platform composed of rectangular rigid plates
connected to a PTO cable system. The mathematical model is based on linearised potential-flow theory, whereby the method of
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Fig. 19. Contour plots of the non-dimensional modulus of diffracted wave elevation for 𝑘𝐿 = 4, 𝐵 = 𝐿, 𝑏 = 𝑙 = 𝐿∕2 and configurations: (a) SET 2a, 𝛹 = 0 rad,
(b) SET 2b, 𝛹 = 0 rad, (c) SET 2c, 𝛹 = 0 rad, (d) 𝐵∕𝐿 = 2, 𝛹 = 𝜋∕4 rad, (e) 𝐵∕𝐿 = 2, 𝛹 = 𝜋∕4 rad, and (f) 𝐵∕𝐿 = 2, 𝛹 = 𝜋∕4 rad. The platform is shaded black.

Fig. 20. Capture-width ratio 𝐶𝑊 as a function of angle of incidence 𝛹 , 𝑘𝐿 and PTO coefficient 𝜈𝑃𝑇𝑂 for 𝐵 = 𝐿, 𝑏 = 𝑙 = 𝐿∕2 and configurations: (a) SET 3a,
𝛹 = 0 rad, (b) SET 3b, 𝛹 = 0 rad, (c) SET 3c, 𝛹 = 0 rad, (d) SET 3a, 𝛹 = 𝜋∕4 rad, (e) SET 3b, 𝛹 = 𝜋∕4 rad, (f) SET 3c, 𝛹 = 𝜋∕4 rad.

dry modes is combined with Green’s function and Green’s theorem to solve for the hydrodynamic radiation and diffraction velocity
potentials.

Experimental data on the response of a rigid floating plate in regular waves were obtained from physical tests conducted in the
COAST laboratory at the University of Plymouth. The effect of heave and pitch modes on overall plate motion was elucidated over a
wide range of fundamental wave frequencies. Very close agreement was obtained between the experimental and analytical response
spectra. Using Fourier analysis the second harmonics of the plate response were determined from the measured displacement time
series. The results revealed second-harmonic peaks of significant amplitude. In practice, these second-order response spikes would
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Fig. 21. Hydrodynamic force and moment components with respect to 𝑘𝐿 for SET 3 with 𝐵 = 𝐿, and 𝑏 = 𝑙 = 𝐿∕2 : (a) heave exciting force, pitch and roll
exciting moments, 𝛹 = 0 rad; (b) heave exciting force, pitch and roll exciting moments, 𝛹 = 𝜋∕4 rad; (c) heave added mass, pitch and roll added inertia; (d)
heave, pitch and roll radiation damping.

Fig. 22. Contour plots of the non-dimensional modulus of diffracted wave elevation for 𝑘𝐿 = 4, 𝐵 = 𝐿, 𝑏 = 𝑙 = 𝐿∕2 and configurations: (a) SET 3a, 𝛹 = 0 rad,
(b) SET 3b, 𝛹 = 0 rad, (c) SET 3c, 𝛹 = 0 rad, (d) SET 3a, 𝛹 = 𝜋∕4 rad, (e) SET 3b, 𝛹 = 𝜋∕4 rad, and (f) SET 3c, 𝛹 = 𝜋∕4 rad. The platform is shaded black.
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cause additional external forces on the mooring lines and greater structural stress. The results support the use of potential flow
theory developed herein as a tool to predict body motion in ocean waves.

The wave power extraction efficiency was assessed for generalised incident wave direction and several platform configurations,
including single and arrays of rectangular plates, and complex C-, I-, cross- and T-shaped platforms. The analytical model indicated
that single rectangular slender plates are potentially capable of absorbing significant energy, at the cost of decreased bandwidth.
For arrays of rectangular plates it was found that the effect of increasing distance between the plates is to increase the number
of moonpool resonant frequencies and capture-width ratio bandwidth. The C-shaped platforms exhibited high energy extraction
efficiency, and are capable of absorbing the same wave power as rectangular plates of the same width while having the considerable
benefit of smaller wetted area. This indicates the potential use of the present theoretical model by design engineers to alter WEC
platform geometry to maximise the capture-width ratio while reducing their cost.

The theoretical model presented herein can be extended to any configuration or shape, but is limited to rigid floating objects of
small draft and PTO cables characterised by linear damping. We recommend that analysis of the optimal distribution of both PTO
devices and platform elasticity be undertaken, supplemented by further physical tests. Such studies would lead to the improved
design of plate WEC devices in ocean waves, and would help the development of modern technologies such as floating offshore
solar energy farms.
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Appendix. Convergence of panel method

In this section we analyse the convergence of the panel method by analysing the behaviour of heave 𝜁ℎ, pitch 𝜁𝑝 and roll 𝜁ℎ
responses, versus 𝑘𝐿 for various panel numbers 𝑁𝑝. For brevity, we consider the free-response of the configuration SET 1a for
𝐵 = 2𝐿 and angle of incidence 𝛹 = 𝜋∕4 rad. Fig. A.23 shows that for 𝑁𝑝 = 900 we reach good convergence. We should point
out that other authors such as Meylan (2002), indicate that 900 panels are sufficient, whereas Newman (1985) suggests that ‘‘a
large number of discrete ‘‘panel’’ elements must be utilised, typically between 100 and 1000’’. For these reasons, in the calculations
presented in this paper, we decide to use 𝑁𝑝 = 1000.
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Fig. A.23. Behaviour of normalised heave, pitch and roll free-response versus 𝑘𝐿 for various numbers of panels 𝑁𝑝. The plate belongs to SET 1a, whereas
𝐵 = 2𝐿 and angle of incidence is set 𝛹 = 𝜋∕4 rad.
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