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Abstract— Cybersecurity is a critical aspect for the 

energy industry to defend against cyber attacks. However, 

justifying the costs of cybersecurity measures is essential. A cost-

benefit analysis (CBA) is commonly used to support decision-

making for risk mitigation, helping to identify strategies that 

optimally balance mitigation costs and risk reduction. In this 

survey, we analyse existing approaches and provide a taxonomic 

overview of methods for cyber risk mitigation cost-benefit 

analysis, focusing on key aspects that determine their 

applicability to energy systems. The survey includes both 

general and contextual works, employing various methodologies 

for CBA, whether analytical or criteria-based. We conclude 

with an analysis of future directions based on recent 

developments in these methods. As an emerging area, this 

taxonomy could serve as a foundation that can be expanded with 

more data from other publications in the field, offering an 

opportunity to advance knowledge in energy systems. 

Keywords—energy, cyber, risk, mitigation, cost benefit 

analysis, taxonomy, survey 

I. INTRODUCTION

A DNV report [1] stated that energy executives anticipate 
an increase in cyber attacks on the energy industry. They 
expect these attacks to cause operational shutdowns (85%) 
and damage to energy assets and critical infrastructure (84%). 
Additionally, 74% foresee environmental harm, and 57% 
anticipate fatalities as a result of such attacks. Similarly, a 
report [2] by the Alan Turing Institute highlighted the 
growing threats faced by the offshore wind energy industry. 
Forbes reported 2,365 cyberattacks in 2023, affecting 
343,338,964 victims [3]. Given the prevalence of these 
attacks, cybersecurity is crucial for the energy industry to 
protect itself. 

A. Cyber security spending and justification

In this research, we are concerned with cyber risk
mitigation. NIST defines cyber risk as risk of financial loss, 
operational disruption, or damage, from the failure of the 
digital technologies employed for informational and/or 
operational functions introduced to a manufacturing system 
via electronic means from the unauthorized access, use, 
disclosure, disruption, modification, or destruction of the 
manufacturing system [4]. However, cybersecurity solutions 
for cyber risk mitigation can be costly and therefore need to 
be justified in an organisation. Gartner forecasted spending to 
increase to $215 billion in 2024, an increase of 14.3% from 
2023 [5]. The number of cybersecurity solutions available, 

and their range of capabilities and costs, makes cost benefit 
analysis a critical part of an organisations cybersecurity 
strategy [6].  

Because an organization’s cybersecurity investment has 
financial considerations, there should be justification for 
investment in mitigation measures. When determining the 
most effective strategy, a cost-benefit analysis (CBA) 
becomes crucial. The CBA can be used to analyse and 
evaluate between mitigation measures.   

A cost-benefit analysis is the process used to measure the 
benefits of a decision, minus the costs associated with taking 
that action [7]. A cost benefit analysis (CBA) is commonly 
utilised to support decision-making in risk mitigation. With a 
CBA, risk mitigation strategies that strike an optimal balance 
between the costs of mitigation measures and the resulting 
risk reduction can be identified [8].  

II. BACKGROUND

A. Risk Treatment Process

Fig. 1 illustrates the process of risk treatment. The stages
of establishing the context and risk assessment are prior and 
necessary steps before the stage of risk treatment. Under risk 
treatment, there are the stages of mitigation analysis and 
mitigation evaluation. Under the step of mitigation analysis, 
firstly the controls or mitigation measures under 
consideration are determined. Cybersecurity risk estimation 
estimates the prospective residual risk after implementation 
of the controls. If the estimated residual risk from 
implementation of a control is acceptable, the control goes 
through the step of mitigation evaluation.  

In mitigation evaluation, the quantitative and qualitative 
costs and benefits of (or set of) controls are estimated. The 
difference in prospective losses after implementing the 
control compared to doing nothing constitutes the benefits. 
The costs of the control are the costs of implementing the 
control and any related losses in the implementation.  

The costs and benefits can be quantitative or qualitative.  
Quantitative data is information about monetary quantities, 
it can be counted, measured, and expressed using numbers. 
Examples are cost of mitigation and potential savings from 
the mitigation. Qualitative data is descriptive and conceptual, 
categorised based on traits and characteristics that can be 
observed but not measured [9].  
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Fig. 1. Overview of process of risk treatment 

Examples are reduced risk, effectiveness and ease of use. 
However, inherently qualitative data can also be expressed 
quantitatively. For example, subject matter experts (SMEs) 
can rank data into numerical values, or convert qualitative 
information into estimated quantitative values using 
calculations based on related quantities. An example of this 
is expressing risk in monetary terms. 

A CBA is performed with the cost benefit data using the 
chosen CBA method. Thereafter, the decision is made and if 
selected, the control measures are implemented. 

B. Area of application

This paper focuses on infrastructure in the energy industry,
specifically on the convergence of Information Technology 
(IT) and Operational Technology (OT), known as IT/OT. 
This convergence creates cyber-physical systems (CPS), 
which integrate sensing, computation, control, networking, 
and analytics to interact with the physical world. CPS are a 
result of the IT/OT convergence, providing a unified 
ecosystem [10]. 

The cost-benefit analysis (CBA) for IT/OT systems differs 
from that for purely IT systems due to different types of 
losses, considerations, and priorities. Cyber-physical systems 
can experience physical losses, which might have more 
severe consequences, including environmental and human 
impacts. Mitigation measures in OT systems can be 

disruptive and require careful planning around maintenance 
schedules, unlike IT systems where updates are more 
routinely implemented.  

In CBA of energy OT systems, the potential disruption 
caused by mitigation methods must be considered. Control 
measures should be chosen based on their potential impact, 
costs, and effectiveness in the specific context of the energy 
OT environment, which differs significantly from purely IT 
systems. Disruptions must also be considered in IT, however, 
if an issue arises, network equipment can often be shut down 
or isolated for troubleshooting, which is less feasible in OT 
environments where shutting down is rarely an option. 

Information security has mostly been applied to enterprise 
IT networks, resulting in more research on CBA for IT 
compared to OT [11], [12], [13], [14], [15], [16], [17]. 
Previous works on CBA of IT mitigation measures may not 
be directly applicable to converged IT/OT systems, although 
some standard cost benefits remain the same. Energy OT 
differs from general OT in that disruptions can have higher 
severity due to its role as critical infrastructure. Energy 
availability impacts other businesses, infrastructure (such as 
hospitals and transport), and public welfare (including safety 
and environmental concerns). 

Energy OT can and do use existing CBA methods for IT 
and OT since energy networks consist of IT/OT networks, 
which are connected to physical processes for energy 
production, transmission, and distribution. However, at times 
there is a need for CBA customized to energy OT, as 
evidenced by papers that consider energy-specific factors like 
mass disconnect power [18], and grid frequency and voltage 
deviations [19]. However, these could be too specific to apply 
to other applications. Thus, general IT, general OT, and 
context-specific energy OT CBAs can apply at different times 
to different parts of the energy IT/OT network but each have 
limitations. General IT and OT CBA cost modeling may not 
cover the specific needs of energy OT, while contextual 
methods, being more specific, may not apply to other areas 
within energy OT. To clarify the field, this paper aims to 
survey the range of CBA methods applicable to energy OT. 

Limited research has been conducted on quantifying the 
cost-benefit trade-offs of security tools in OT applications 
[20]. Few surveys [21], [22] exist on cyber risk quantification 
and taxonomies for cyber risk treatment, and these do not 
focus on cyber risk mitigation CBA methods for energy 
infrastructure. This gap justifies the focus of this work, which 
aims to curate and classify existing knowledge to advance the 
field. 

The proposed taxonomic survey provides a framework for 
assessing the suitability of CBA methods for the energy 
sector. It classifies methods based on general or contextual 
applicability, the method of the CBA, the output of the CBA, 
and the cost-benefit factors considered. 

The remainder of this work is organized as follows: 
Section 3 explains the proposed taxonomy and analyzes 
various methods. Section 4 presents a discussion and outlines 
future directions. Finally, Section 5 concludes the study.  

III. TAXONOMY

The aim of presenting a taxonomy is to clarify the domain 
in terms of the types and applicability of the CBA methods 
for energy systems. The methods describe various types of 
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CBA methods for different use cases. Understanding the 
different types of CBA and their use cases enables the 
selection of the most appropriate one for a specific 
application. 

The proposed taxonomy is shown in Fig. 2. We first divide 
the methods based on breadth of application into general and 
contextual. General methods are those which can fit a wider 
range of use cases. These methods are suitable for general 
application in energy systems. Contextual methods are those 
which are not so easily generalised for adapting into different 
use cases. Reasons for this could include being designed for 
a specific setting or context, or requiring specific data 
collection setups or criteria parameters that may not align 
with the needs of a particular use case. 

Both contextual and general methods can be divided into 
the type of CBA method, which are: based on multicriteria or 
calculated analytically. Analytical methods calculate CBA 
using a formula which results in a numerical number. For 
example, the CBA method employed could be for example, 
cost benefit differences, Return on investment (ROI), or 
Payback period.   

Criteria-based are methods that use multicriteria analysis 
(MCA) methods to determine the CBA. MCA generally 
includes these stages: developing options, identifying 
objectives and criteria to evaluate the options, weighting the 
criteria, and scoring the impacts of options against the criteria 
to rank them. In some MCA procedures, rather than scoring 
or weighting, the performances of options are simply 
presented using tables, graphs, or diagrams [23].  

 

 
 

Fig. 2. Taxonomy of methods for cyber risk mitigation cost benefit analysis 

Criteria-based methods are further divided into the 
methods used to determine the performance of options, 
namely, prioritisation and optimisation. While prioritisation 
methods concentrate on ranking alternatives, optimisation 
methods aim to find optimal solutions that balance multiple 
objectives.  

The CBA methods work with input data. The types of data 
a CBA method works with are quantitative, qualitative or a 
combination of both.  

The next section describes the taxonomy categories, with 
examples of existing works that fall within them. Table 1 
shows the surveyed works in the categories.  

 
A. Application area: General or Contextual 

For researchers or practitioners seeking to select suitable 
cyber risk mitigation CBA methods for their use case, 
knowledge on the area of applicability of the methods is 
essential. Therefore, the taxonomy first categorizes the 
methods by application area into general and contextual. 
Table 1 also shows the setting or industry that the method is 
based in.  

General methods can be applied for use on energy systems 
or customised for different use cases. Some factors contribute 
to the broader applicability of these methods. They may be 
widely applicable because they address common costs. 
Methods implemented for information security cyber risk 
mitigation e.g. [24] ,[25], [26], [27] have standard cost 
models which are not specific to an industry and could be 
generally applied to energy IT/OT. However, though general, 
the method [27] considers a larger number of costs and 
benefits, which may not all be suitable. The method in [28] 
considered the NIST Cybersecurity Framework (CSF) and 
Cybersecurity Capability Maturity Model (C2M2) maturity 
levels in their CBA, which has general applicability. These 
costs and benefits are non-domain-specific thus the methods 
are considered generally applicable.  

Contextual methods have their own defined structure in 
order for the method to be used: e.g. risk assessment setups, 
data collection sources, parameters, cost model, which means 
it may be challenging to customise and adapt the method to a 
different use case. Contextual methods are specific to the 
context or intended application. Some are contextual because 
they are supposed to be for a field-specific use case. For 
example, [20] is a method for cyber physical resilience of 
wind turbine generators against attacks. The metrics 
considered included generation penalty derived from wind 
site power production and local voltage measurements. 
Similarly, [19] was meant to address the cybersecurity of 
hybrid AC/DC grids, and considered field specific metrics 
such as AC grid frequency & DC voltage deviations. Other 
examples that included metrics that were field specific 
include [29], [18], [30].  

Certain methods assume certain input prerequisites and set 
up before being able to use the method. For example, 
host/network data collection in [31] or network configuration 
information in [12], which are use case specific, and require 
software configuration in the context of computer networks. 
The method in [32] has a testbed with the deployed security 
framework components and needs inputs such as events and 
logs from several signatures based sensors.   

Some other methods were categorised as contextual 
because the costs and benefits considered are fixed. Examples 
are those methods which are using optimisation of costs and 
benefits based on criteria [32],[11]. The limitation with 
optimisation is that the criteria are predefined in each of the 
works and are not easily changed, added or removed to suit a 
use case. These could make the method contextual because 
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these choices may not be the alternatives and criteria which 
fit the needs of a use case. An exception is [28]; despite its 
use of optimization, it was considered generally applicable 
because it employed standard NIST CSF controls and 
Maturity Indicator Levels (MIL) as criteria, which are for 
general use and not intended to be altered. 

 
B. Method of performing CBA: Analytical or criteria-based  

The method of computing CBA is divided into analytical 
or criteria-based. Analytical method means using a formula 
to solve for a particular set of variables to calculate its value, 
which requires quantitative values. CBA methods in 
[20],[29],[30],[24] are examples in this category. Most in this 
category calculate the cost benefit by using differences 
between the loss scenario and implementation costs of the 
controls [20],[30]. For [29], the CBA was a projection of the 
savings gained from using control measures against cyber 
threat events. The method in [24] compared between assigned 
quantitative policy numbers which denote attack difficulty.  

The criteria-based methods were divided further into the 
methods for determining the performance of the mitigation 
controls - prioritisation and optimisation.  Methods [26], [27] 
used prioritisation methods such as Analytical Hierarchy 
Process (AHP) model to select the ranking of controls. 
Examples of methods that employ optimization techniques to 
find optimal solutions balancing multiple objectives include 
[11],[12],[19],[18],[31],[32].  
 
C. Cost benefit data types: Quantitative and Qualitative 

The common quantitative costs presented were the 
scenario losses from cyber threat events and implementation 
costs of the controls.  The papers [20] and [30] broke the 
implementation costs down into capital, maintenance, 
labour/installation. The authors of [30] made further 
breakdowns for several scenarios of control measures.  
Others proposed cost effectiveness, ROI and budget. In 
reference [18], rather than conducting cost modelling, they 
used illustrative costs of control measures. The work in [29] 
considered simplified costs in buckets according to the scale 
of impact of the cyber incident {minor, major, catastrophic}. 
The cost was based on risk score rather than actual cost 
estimates and did not consider the cost of implementing the 
controls. 

A few contextual methods derived the quantitative costs 
and benefits from non-monetary quantities. These were such 
as cyber and physical resilience derived from  wind site 
power production and local voltage measurements [20], AC 
grid frequency & DC voltage deviations [19].  

The common qualitative measure was risk reduction 
from the control measures. The objective of these methods 
was to mitigate cyber risk thus the common benefit sought 
would be reduction in risk in some form or other, which is 
present in all the methods. The risk related measures were 
such as scale of impact of incident, cyber and physical 
resilience, effectiveness of mitigation measures, return on 
attack, attack difficulty, defence probability, number of 
threats affected by control, and negative cost effect of 
countermeasure, and MIL. Though risk is not inherently 
monetary or quantitative, the measure to approximate risk can 
be quantitative, for example, cyber and physical resilience 
[20]. Additionally, qualitative measures such as MIL are 

expressed as numbers to denote ranking [28]. As such, risk 
related measures can be expressed variously as qualitative 
and quantitative depending on its composition.    

Other qualitative costs and benefits encountered were 
compatibility of mitigation measures, geographical location, 
geopolitical context, installed rated power, usability and 
perceived ease of use. 

IV. DISCUSSION AND FUTURE DIRECTIONS  

Most of the methods surveyed were contextual and highly 
specialised to the application area. For example, methods like 
[19] had context specific costs and benefits such as AC 
(alternating current), DC (direct current) and VSC (voltage 
source converters) quantities. The advantage is that it is suited 
and detailed for the particular context. However, it may be 
challenging to customise and adapt the method to a different 
circumstance. Some works e.g. [32], consider a set of costs 
and benefits that are applicable for cyber physical systems, 
including energy OT. The advantage is that such a method 
could be implemented into a suitable general energy OT 
application. However, the cost modelling is incorporated into 
the formulas of the method thus one could not easily add 
other costs and benefits to be considered. A way forward 
could be to build in customisability to the method where 
descriptions can be given on which parts of the method could 
be modified and how to modify it. Perhaps future methods 
could have add-on costs/benefits that can be added or 
removed.     

For general methods e.g. [24],[25], the methods have the 
advantage of broad applicability to energy systems. The 
downside is, they do not cover the costs and considerations 
that are specific to the energy cyber physical domain. General 
methods could overlook considerations of the specific field, 
leading to limited depth in cost-benefit analysis due to their 
non-specialization. To address this, methods that incorporate 
a general setup, data collection, costs and benefits, with the 
ability to add customisation of the relevant costs and benefits 
of the intended target area could be explored.  

The CBA methods used were mostly different with much 
variability from the input data collection and setup required 
by the methods, the mitigation controls, to the costs and 
benefits considered where it is difficult to compare the results 
obtained by each method. A question arises: If a particular set 
of alternative cyber risk mitigation controls was compared 
between these methods, would they have a different outcome 
and how would one judge between them?  Perhaps future 
work could compare and evaluate methods for efficacy and 
accuracy in selection. These could give some incentive for 
the industry to implement these methods.   

Some inputs to the CBA are not as straightforward as 
monetary costs. Some methods, such as [12], have converted 
conventionally various nonquantitative indicators such as 
risk into monetary quantities in order to work with them 
mathematically. The advantage is the ability for computation. 
However, they are not readily convertible and may be subject 
to debate. Other methods have retained risk = impact x 
probability [30], which is a more standard definition. 
However, it is known to be difficult to estimate measures like 
probability of attack [30]. How the method to estimate the 
input parameters impacts the CBA could warrant further 
investigation.    
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Energy and broadly OT systems prioritise certain factors 
such as availability. It is possible that some mitigation 
controls could have some adverse effect on the OT systems 
such as latency and disruption, especially on legacy 
components. Among the literature, there is some 
consideration [26], [32] but not most. Factors that impact 
energy OT systems could be given cost consideration in 
future works. 

In summary, the limitations of the CBA methods being 
used were that some methods were too general, lacking the 
granularity to make them particularly useful to specific 
applications in energy systems. Conversely, CBA methods 
that were specific to a particular application were not readily 
applicable for other purposes. Methods that were tied to a 
particular set up (such as network configuration, inputs, data 
collection, sensors, formulas) are not easily applied into a 
different system and further investment could be needed for 
the set up.  Lessons learned for future works of CBA for 
energy systems would be to design methods that are more 
readily applicable, with less requirements as well as being 
more customisable towards an application.  

V. CONCLUSIONS 

This paper proposes a taxonomy and survey of cyber risk 
mitigation cost benefit analysis methods for energy 
infrastructure. Our survey covers works that are general as 
well as contextual, analytical or criteria-based and using 
different methodologies for performing the cost benefit 
analysis. Analysing the works with regards to the proposed 
taxonomy, we have discussed future directions that might 
improve the applicability, comparability and 
comprehensiveness of CBA methods for energy systems.  

As an emerging area, we expect this work could be a basis 
that can be expanded with a larger data set from other 
publications in the field.    
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TABLE I.  EXISTING WORK MAPPED TO THE PROPOSED TAXONOMY  

Ref 
Setting/ 

Area  

Applicatio

n area 
CBA type CBA form Quantitative Costs/benefits Qualitative Costs/benefits 

[29] 

Electricity 
transmission 
and 
distribution 

Contextual Analytical 
In proportion to 
risk score 

Scenario loss 

Scale of impact of incident {minor, 
major, catastrophic}, function of control, 
control availability by site and over time, 
control effectiveness, threat routes, 
profile, likelihood, and types 

[20] Wind power Contextual Analytical Payback period 
Capital, maintenance, labour, 
cyber and physical resilience 

- 

[30] 
Solar 
nanogrids 

Contextual Analytical Cost difference 
Scenario loss, 
implementation cost 

Geographical location, Geopolitical 
context, Installed rated power 

[18] 
Electric 
power grid 

Contextual Criteria Optimisation 
Illustrative mitigation 
measures’ costs 

Mass disconnects, compatibility & 
effectiveness of mitigation measures 

[12] 
Computer 
networks 

Contextual Criteria Optimisation ROI, budget usability 

[19] 
Hybrid 
AC/DC Grid 

Contextual Criteria Optimisation AC grid frequency & DC 
voltage deviations, VSC 
injection states & magnitudes 

- 

[31] 
Computer 
networks 

Contextual Criteria Optimisation Asset value, defense cost  Return on attack 

[32] 

Cyberattacks 
on CPS 

Contextual Criteria Optimisation Cost of Asset, loss of control 
and salary 

Payoff gain, negative cost effect of 
countermeasure. Future: operational 
costs, response time, impact index, 
impacts on properties, finance & human 
lives 

[11] 
Information 
security 

Contextual Criteria Optimisation Implementation cost Number of threats affected by control 

[24] 
Information 
security 

General Analytical Quantitative 
policy numbers 

- Attack difficulty 

[28] ICS General Criteria Optimisation Rank-weight comparison Maturity indicator level (MIL) 

[25] 
Information 
security 

General Criteria MCA using 
graph 

Implementation cost, Loss 
from attack 

Defence probability 

[26] 

Smart grids General Criteria Prioritisation Cost-effectiveness security effectiveness, scalability, 
integration & compatibility, performance 
impact, manageability and usability, 
compliance & regulatory requirements, 
resilience & redundancy, vendor support 
& collaboration, future readiness, 
network segmentation, patch 
management, threat intelligence, vendor 
& supply chain security 

[27] 
Information 
security 

General Criteria Prioritisation Implementation cost Perceived ease of use, and effectiveness 
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