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Abstract

We provide a worldline representation of the one-loop effective action for a Dirac particle
coupled to external scalar, pseudoscalar, vector and axialvector fields. Extending previous
work by two of the authors on the pure vector-axialvector case to all four couplings, it allows
one to treat the real and the imaginary parts of the effective action in a unified manner, at
the price of having a non-Hermitian Hamiltonian.

Unlike existing worldline representations, our new worldline action contains terms with
an odd number of Grassmann fields, leading to ordering problems that in the worldline
formalism are usually encountered only in curved space. Drawing on the highly developed
technology for worldline path-integrals in gravity, we employ the Time Slicing regularisation
of the path integral which comes about with a specific “counterterm Lagrangian”, which
we calculate once and for all and non-perturbatively, to provide unambiguous rules to treat
products of distributions occurring in some diagrams of the one-dimensional worldline theory.
We then employ the usual worldline machinery to lay out the rules for the calculation of the
effective action itself as well as the corresponding one-loop amplitudes.

We test the formalism on the calculation of various heat-kernel coefficients, self energies
and scattering amplitudes, including the Higgs decay into two photons or gluons and the
PCAC relation. In all cases we find perfect agreement with more established approaches.

Keywords: Worldline formalism, axial coupling, Yukawa coupling, effective action
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1. Introduction

The worldline formalism offers a first quantised alternative to the standard Feynman dia-
gram method in perturbative quantum field theory (QFT). Originally suggested by Feynman
for multiloop scalar [1] and spinor QED [2] (see also [3, 4]) it experienced a renaissance in
the early nineties in the context of one-loop QCD and string theory amplitudes through the
work of Bern and Kosower [5] and Strassler [6], to some extent anticipated by Polyakov [7]
(see also [8, 9, 10, 11]). The main idea is to reformulate QFT not in terms of its underlying
fields but rather in terms of path integrals for the corresponding relativistic point particles.
Since then it has found a number of applications in the QFT of scalars and spinors coupled
to abelian and non-abelian gauge fields, both in flat space and in the presence of electro-
magnetic or gravitational backgrounds, and has provided a powerful alternative approach to
the calculation of effective actions, propagators and scattering amplitudes (see the reviews
[12, 13, 14] and books [15, 16]).

Naturally, soon the need was felt for the construction of worldline representations for the
full set of Standard Model couplings. In [17, 18, 19, 20] such representations were developed
for the closed fermion loop coupled to external scalar, pseudoscalar, vector and axialvector
fields, which in Minkowskian field theory would be described by the space-time action1

S[ψ, ϕ, ϕ5, A,A5] =

∫
d4x ψ̄

[
i/∂ −m− gϕ− ig5γ5ϕ5 − eA/ − e5γ5A/5

]
ψ . (1.1)

In the following we absorb the coupling constants into the background fields.
Although those representations have been successfully tested on the calculation of am-

plitudes [21] as well as of the Standard Model effective action [22, 23], they are somewhat
less appealing than their non-chiral QED and QCD analogues in so far as they imply a
separate treatment of parity-even and parity-odd amplitudes. For the euclidean2 effective
action corresponding to integrating out the fermion degrees of freedom in (1.1),

ΓE[ϕ, ϕ5, A,A5] = lnDet
[
p/E +m+ ϕ+ iγ5ϕ5 + A/E + γ5A/E5

]
, (1.2)

this shows up in a separate treatment of its real and imaginary parts (the latter in this
context arises only for parity-odd amplitudes as an artefact of the Wick rotation of the
Levi-Civita tensor).

For the special case of only the vector and axialvector couplings, it was shown by two of
the present authors in [24] how to avoid the separation of the effective action into its real
and imaginary parts by formally rewriting it in terms of the effective action for a scalar loop
in a fictitious non-abelian background. This made it possible to use known results for the
expansion of the non-abelian heat-kernel for analysing the anomalous and non-anomalous

1In Minkowski space we use the mostly plus metric ηµν , with gamma matrices satisfying {γµ, γν} =
−2ηµν , so that γ0 is Hermitian and γi are anti-Hermitian. Also, γ5 ≡ iγ0γ1γ2γ3 is Hermitian.

2In euclidean space we use anti-Hermitian gamma matrices with {γµ
E , γ

ν
E} = −2δµν (note that this differs

from [24, 25, 12] where {γµ
E , γ

ν
E} = +2δµν was used) and Hermitian γ5E = γ1

Eγ
2
Eγ

3
Eγ

4
E . The subscript “E”

is omitted in the following. The euclidean ε-tensor is defined by ε1234 = 1.
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content of the heat-kernel expansion for the vector-axialvector case. More significantly, it
allowed the reuse of the worldline representation of the non-abelian effective action to derive
a novel such representation for the effective action in the vector-axialvector background.

This representation was then used in [25] for deriving a Master Formula for one-loop
vector-axialvector amplitudes, as well as for a recalculation of the ABJ anomaly [26, 27], with
the interesting result that in this particular worldline formulation the anomalous divergence
naturally appears at the axialvector current, not the vector one. It is straightforward to
incorporate an additional constant electromagnetic background field along the lines of [28,
29], which was used for a calculation of the one-loop vector-axialvector polarisation tensor
[30] and the axialvector-axialvector polarisation tensor [31] in such a field. See also [32, 33]
for worldline models of chiral fermions in the Standard Model and [34] for a generalisation
to unified theories.

In the present Letter, we generalise the approach of [24] to the closed fermion loop coupled
to the full set of scalar, pseudoscalar, abelian vector and axialvector fields. This turns out
to be a by no means straightforward task since, differently from the pure vector-axialvector
case, the resulting worldline action contains terms with an odd number of Grassmann fields,
which require the use of a suitable path-ordering. Moreover, although the model is defined
in flat space, at the operatorial level the axial fields enter coupled to products of gamma
matrices which, when passing to the path integral, imply an ordering ambiguity which must
be resolved. Following strategies developed in the curved-space context [15], we employ
the Time Slicing regularisation of the path integral which requires the addition of a spe-
cific set of counterterms to the worldline Lagrangian – which we calculate completely and
non-perturbatively – and provides unambiguous rules for the treatment of products of distri-
butions occurring in certain diagrams of the one-dimensional worldline theory. We compute
various scattering amplitudes and heat-kernel coefficients, finding perfect agreement with
space-time QFT approaches and heat-kernel techniques respectively.

The outline of the manuscript is as follows: we start by deriving a proper-time repre-
sentation of the effective action in Section 2. We then use standard coherent-state methods
to obtain a worldline description in Section 3, where we also calculate the counterterms
corresponding to our path integral regularisation. In Section 4 we employ the worldline
representation to rederive some heat kernel coefficients as a basic test of our formalism. In
Section 5 we lay out the rules for the calculation of one-loop amplitudes with an arbitrary
number of scalar, pseudoscalar, vector and axialvector legs in the formalism. Those we ap-
ply in Section 6 to some parity-even, in Section 7 to some parity-odd amplitudes. Section
8 offers a summary and outline of possible further extensions. In the appendix we use the
formalism of Section 3, for calculating the heat-kernel coefficients a1 and a2 in a general
(even) dimension. We also briefly comment on the consequences of chiral invariance on the
amplitudes and heat-kernel coefficients in this model.
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2. Proper-time representation of the effective action

The euclidean effective action corresponding to the action (1.1) can be expressed as the
functional determinant

Γ[ϕ, ϕ5, A,A5] = lnDet
[
m+O

]
(2.1)

with the euclidean Dirac operator

O = p/ + A/ + γ5A/5 + ϕ+ iγ5ϕ5 . (2.2)

Note that, in general, this operator is neither Hermitian nor anti-Hermitian. Using γ25 = 1
and the cyclic invariance of the determinant, we can rewrite this as

Det
(
m+O

)
= Det

[
γ25
(
m+O

)]
= Det

[
γ5
(
m+O

)
γ5
]
= Det

(
m+ Õ

)
,

(2.3)

where

Õ := γ5Oγ5 = −p/ − A/ − γ5A/5 + ϕ+ iγ5ϕ5 . (2.4)

Thus without loss of generality we have the alternative representation

Γ[ϕ, ϕ5, A,A5] =
1

2
lnDet

[
(m+O)(m+ Õ)

]
. (2.5)

A long but straightforward calculation shows that we can further write this in the second
order form

(m+O)(m+ Õ) = m2 − (∂µ + iAµ)
2 + a , (2.6)

where the matrix-valued potentials take the form (γµν := 1
2
[γµ, γν ])

Aµ = Aµ + γµνγ5A
ν
5 + iγµγ5ϕ5 ,

a =
i

2
γµν

(
∂µAν − ∂νAµ

)
+ iγ5∂µA

µ
5 + (D − 2)A2

5 + (D − 1)ϕ2
5

+2i(D − 2)ϕ5A/5 − iγµ∂µϕ+ ϕ2 + 2iϕϕ5γ5 + 2m(ϕ+ iγ5ϕ5) .

(2.7)

The operator on the RHS of (2.6) resembles a Klein-Gordon Hamiltonian with matrix-valued
potentials (as is already familiar from the worldline formalism applied to QED – see [35, 36]
for a discussion of the transition from the first- to the second-order formalism of the Dirac
theory). Using (2.5), (2.6) together with the “Tr ln = ln Det” identity and the integral
representation of the logarithm, we obtain the proper-time representation of the effective
action in the form

Γ[ϕ, ϕ5, A,A5] = −1

2
Tr

∫ ∞

0

dT

T
exp

{
−T

[
−(∂µ + iAµ)

2 + a+m2
]}
. (2.8)
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Note that the exponent is not Hermitian, which is the price to pay for writing down the
whole effective action – which in general is not real – in one piece.

As it stands, the representation (2.8) is already quite useful as a tool for obtaining the
Seeley-DeWitt (or heat-kernel) expansion for the case at hand, which reads [37, 38, 39, 40,
42, 43]:

Tr exp
{
−T

[
−(∂µ + iAµ)

2 + a
]}

=
1

(4πT )
D
2

∞∑
n=0

T n
∫
dDx an(x, x) . (2.9)

In the Appendix, we show how (2.8) is well adapted for the determination of the heat-kernel
coefficients, an, and we provide the first 3 coefficients explicitly in arbitrary dimension. We
will also use these explicit results in the following section as a means to verify the calculation
of some counterterms required in the time-slicing regularisation of worldline representation
of the effective action.

3. Worldline representation of the effective action

Although the representation (2.8) is already quite useful for a “standard” computation of
the effective action, our real aim is to find a worldline representation, which as usual should
be universally applicable to the computation of the effective action itself, as well as of the
associated amplitudes.

3.1. Naive worldline Lagrangian
By applying the coherent-state formalism [44, 45] along the lines of [24, 25, 12], (2.8)

transforms into the following worldline representation of the effective action:

Γ[ϕ, ϕ5, A,A5] = −1

2

∫ ∞

0

dT

T
e−m

2T

∫
P

Dx

∫
A/P

DψP e−
∫ T
0 dτ L(τ) ,

(3.1)

with worldline Lagrangian

L(τ) =
1

4
ẋ2 +

1

2
ψµψ̇

µ + iẋµAµ − iψµFµνψ
ν − 2iẋµψµψνA

ν
5 γ̂5 + i∂µA

µ
5 γ̂5

+(D − 2)A2
5 + ϕ2 + (D − 1)ϕ2

5 + 2iϕϕ5γ̂5 + 2m(ϕ+ iϕ5γ̂5)

−
√
2ψµ∂µϕ+

√
2iẋµψ

µϕ5γ̂5 + 2
√
2(D − 2)ψµA

µ
5ϕ5 . (3.2)

Here as usual
∫
P
Dx denotes the coordinate path integral over the space of all closed (peri-

odic) loops with fixed proper-time length T , and
∫
A/P

Dψ a path integral over Grassmann-
valued functions, which are the eigenvalues of operators identified with the γ matrices
through ψ̂µ = i√

2
γµ. The periodicity properties of

∫
Dψ are perturbatively determined

by the number of interactions with the axialvector field A5; antiperiodic (periodic) bound-
ary conditions on ψ, ψ(T ) = −(+)ψ(0), have to be used if that number is even (odd). This
book-keeping is provided by the γ5-matrix which has now turned into an operator γ̂5 that

6



is doing nothing but switching the boundary conditions when the exponential in (3.1) is
expanded.

The worldline Lagrangian (3.2) has an unusual feature which does not appear in the
standard QED case, and not even in the pure vector–axialvector case treated in [24, 25],
namely the appearance of terms linear in the Grassmann variables ψµ. A careful analysis
shows that this does not lead to inconsistencies in the path-integral formalism, just to
the following two complications: first, path-ordering must be used whenever such terms
are present in a term; second, translation invariance cannot be used in the usual way to
arbitrarily fix the location of one of the vertices on the loop. Moreover, the operator γ̂5
in such cases assumes a slightly less trivial role since, whenever there is more than one
such operator around, they must be cancelled in pairs by bringing them next to each other,
leading to relative signs whenever this requires a γ̂5 to move across a single ψµ. With these
instructions, the worldline representation, (3.1), and the operators appearing in the action
(3.2) are well-defined, at least perturbatively in the fields.

Finally, it will be useful to observe that, introducing the new field variables

Ãµ ≡ Aµ +
√
2ψµϕ5γ̂5 (3.3)

Ãµ5 ≡ Aµ5 +
√
2ψµϕ5 (3.4)

ϕ̃ ≡ ϕ+ iϕ5γ̂5 , (3.5)

the worldline Lagrangian (3.2) can be rewritten more compactly as

L(τ) =
1

4
ẋ2 +

1

2
ψµψ̇

µ + iẋµÃµ − iψµF̃µνψ
ν − 2iẋµψµψνÃ

ν
5 γ̂5 + i∂µÃ

µ
5 γ̂5 −

√
2ψµ∂µϕ̃

+2mϕ̃+ ϕ̃2 +Dϕ2
5 + (D − 2)Ã2

5 . (3.6)

However, one technical aspect of the construction of the path integral remains unspecified:
specifically how it should be defined as the continuum limit of some regularised object. In
the following subsection we interpret the path integral in Time Slicing regularisation, and
calculate the necessary counter terms which accompany this prescription.

3.2. Counterterms from time-slicing regularisation
It is well known that worldline path integrals in curved spaces need to be regularised, as

the actions they involve are one-dimensional non-linear sigma models, and their short-time
perturbation theory leads to ambiguities and divergences, which need to be treated. In the
past, three main schemes have been developed, namely Time Slicing, Mode Regularisation
and Worldline Dimensional Regularisation [15].

In the present manuscript, the target space is flat and gravity is absent, but the vector
potential which occurs in the point particle Hamiltonian is matrix-valued. In particular, the
axial vector field enters coupled to the Lorentz generators in the spin 1/2 representation,
γµν , leading to an “artificial” spin connection term. Thus, some care is needed in order
to pass from the operatorial approach to the corresponding path integral: divergences are
not expected on the compact interval, but there are worldline integrals which turn out to

7



be ambiguous, since they involve products of distributions. Moreover, as already pointed
out, a path ordering is needed when Grassmann odd terms are present. In such a case it
appears that the only viable regularisation scheme is Time Slicing as it is first-principled,
and applicable at the level of the Hamiltonian operator.

Time Slicing with the mid-point rule requires the Hamiltonian operator to be Weyl-
ordered. In our case, in order to use the coherent-state approach to the fermionic operators
this implies that

Π̃2 = (−i∂µ + Aµ)
2 (3.7)

must be Weyl-ordered. The orbital part is naturally Weyl-ordered as the space is flat. Thus,
to achieve Weyl-ordering, only the following squared operator must be considered

(γµν γ̂5A
ν
5 + iγµγ̂5ϕ5)

2 , (3.8)

containing both pseudoscalar and pseudovector fields (here, we keep using γ̂5 as a book-
keeping device).

Now, a given operator Ô is Weyl-ordered when it is written in its (anti)-symmetrised
form in its ladder operators plus a remainder, which is unambiguous in the product of ladder
operators, i.e. Ô = ÔW = ÔS +∆, where S stands for (anti)-symmetrised3. Thus, in order
to write the symmetrised version of a generic operator involving γ matrices we have to write
their corresponding Majorana operators ψ̂µ in terms of ladder operators, which satisfy the
fermionic anticommutation algebra. In a generic even dimension, D = 2d, this can be done
as follows (we omit hats on the ladder operators to avoid cluttering)

χm :=
1√
2

(
ψ̂m + iψ̂m+d

)
, χ̄m :=

1√
2

(
ψ̂m − iψ̂m+d

)
, m = 1, . . . , d . (3.9)

In the present case we are obviously interested in the (anti)-symmetrisation of the Hamilton
operator, which in the Time Slicing of the evolution operator, is linked to the mid-point rule
for the corresponding Hamiltonian function – see e.g. Ref. [15]. With the above identifica-
tion γµ = −i

√
2ψ̂µ which implies {ψ̂µ, ψ̂ν} = δµν . In particular, anti-symmetrisation for a

pair of these ladder operators takes the form (χmχ̄n)S ≡ 1
2

(
χmχ̄n − χ̄nχm

)
.

Let us thus consider the different pieces arising from (3.8) separately. We start with the
Weyl-ordering of the square of the second addendum in (3.8), being

(iγµγ̂5ϕ5)
2
W = −2ϕ2

5(ψ̂µψ̂
µ)W = −2ϕ2

5(ψ̂µψ̂
µ)S −Dϕ2

5 , (3.10)

where, of course, (ψµψν)S = 1
2
(ψµψν − ψνψµ), i.e.

(ψ̂µψ̂ν)W = (ψ̂µψ̂ν)S +
1

2
δµν , (3.11)

3Note that we use the notation of the book [15], but also use some results adapted from [46], where Weyl
ordering is defined differently.
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which holds for a pair of Majorana fermionic operators (see also Eq. (55) of [46]). Thus,
from the expression above we have the following contribution to the counterterm,

VTS ⊇ −Dϕ2
5 , (3.12)

where ‘TS’ stands for Time Slicing.
Let us now consider the Weyl-ordering of the cross-product term,

iϕ5A
ν
5(−γµνγµ + γµγµν)W = −2

√
2ϕ5A

ν
5(−ψ̂µνψ̂µ + ψ̂µψ̂µν)W , (3.13)

where ψ̂µν := 1
2
[ψ̂µ, ψ̂ν ]. This involves the product of three operators, which was not worked

out explicitly in Ref. [46], so we outline some details of the computation. Thus,

2(−ψ̂µνψ̂µ + ψ̂µψ̂µν)W = (−2ψ̂µψ̂νψ̂
µ + ψ̂νψ̂µψ̂

µ + ψ̂µψ̂
µψ̂ν)W

= (−2ψ̂µψ̂νψ̂
µ + ψ̂νψ̂µψ̂

µ + ψ̂µψ̂
µψ̂ν)S +∆ . (3.14)

Let us, for instance, consider the first term here, with ν = n (the case ν = n + d can be
obtained identically),

(ψ̂µψ̂nψ̂
µ)S = (ψ̂mψ̂nψ̂

m)S + (ψ̂m+d ψ̂n ψ̂
m+d)S , (3.15)

which, in terms of the ladder operators reduces to,

(ψ̂µψ̂nψ̂
µ)S =

1

2
√
2

[(
χm + χ̄m

)(
χn + χ̄n

)(
χm + χ̄m

)]
S

− 1

2
√
2

[(
χm − χ̄m

)(
χn + χ̄n

)(
χm − χ̄m

)]
S

=
1√
2

(
χmχnχ̄

m + χmχ̄nχ̄
m + χ̄mχnχ

m + χ̄mχ̄nχ
m
)
S
. (3.16)

Explicitly, the first term can be written as(
χmχnχ̄

m
)
S
=

1

3!

(
2χmχnχ̄

m + 2χ̄mχmχn − χmχ̄
mχn + χnχ̄

mχm
)
S
= χmχnχ̄

m +
d− 1

2
χn ,

(3.17)

by using the anticommutation relations among the ladder operators. Thus, the latter can
be rewritten as (

χmχnχ̄
m
)
W

=
(
χmχnχ̄

m
)
S
− d− 1

2
χn . (3.18)

One proceeds with similar steps with the other three terms and the final result is cast in
terms of the original ψs as

(ψ̂µψ̂nψ̂
µ)W = (ψ̂µψ̂nψ̂

µ)S −
D − 2

2
ψ̂n . (3.19)

9



Obviously, the same rule holds if we replace n with n+ d, i.e.

(ψ̂µψ̂νψ̂
µ)W = (ψ̂µψ̂νψ̂

µ)S −
D − 2

2
ψ̂ν . (3.20)

Proceeding in the exact same way, one also obtains

(ψ̂µψ̂
µψ̂ν)W = (ψ̂µψ̂

µψ̂ν)S +
D

2
ψ̂ν , (3.21)

(ψ̂νψ̂µψ̂
µ)W = (ψ̂νψ̂µψ̂

µ)S +
D

2
ψ̂ν , (3.22)

and the final result reads,

−2
√
2(−ψ̂µνψ̂µ + ψ̂µψ̂µν)W = −2

√
2(−ψ̂µνψ̂µ + ψ̂µψ̂µν)S − 2

√
2(D − 1)ψ̂ν . (3.23)

Thus, the cross term in question requires the counterterm contribution

VTS ⊇ −2
√
2(D − 1)ψ · A5ϕ5 . (3.24)

Finally, let us consider the square of the first addendum, for which we have

(γµν γ̂5A
ν
5)

2
W = (γµνγµν′)WA

ν
5A

ν′

5

= 4(ψ̂µνψ̂µν′)WA
ν
5A

ν′

5 . (3.25)

By defining the “artificial” spin connection,

ωlµν = A5µδ
l
ν − A5 νδ

l
µ , (3.26)

the expression above can be re-written as

ωlµν ω
l
µ′ν′(ψ̂

µνψ̂µ
′ν′)W . (3.27)

At this point we can directly use the results obtained in [46], cf. Eq. (56), for a spinning
particle in curved space, i.e.

ωlµν ω
l
µ′ν′(ψ̂

µνψ̂µ
′ν′)W = ωlµν ω

l
µ′ν′(ψ̂

µνψ̂µ
′ν′)S +

1

2
ωlµνω

lµν

= ωlµν ω
l
µ′ν′(ψ̂

µνψ̂µ
′ν′)S − (D − 1)A2

5 . (3.28)

The final term on the RHS will thus sum to the counterterm potential, which globally now
reads

VTS = −Dϕ2
5 − 2

√
2(D − 1)ψµA

µ
5ϕ5 − (D − 1)A2

5 . (3.29)

Due to the superrenormalisability of the worldline action this is already the full non-
perturbative counterterm Lagrangian. Indeed, the theory is not divergent on the compact
interval as there are no derivative interactions. There are, however, ambiguities as we will
illustrate below, but these are fully resolved by the Time Slicing prescription and the coun-
terterm potential. We have checked that no higher order contributions to the counterterm
potential can arise by an analysis similar to the one performed in [15] for the curved-space
path integral (in brief, the only additional fields that enter higher loop worldline diagrams
are x(τ)s, without derivatives, which improve their behaviour).
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3.3. Total worldline Lagrangian
We must include the TS counterterm potential, calculated above, in the worldline action.

Hence, there is a shift

L(τ) → L(τ) + VTS =
1

4
ẋ2 +

1

2
ψµψ̇

µ + iẋµAµ − iψµFµνψ
ν − 2iẋµψµψνA

ν
5 γ̂5 + i∂µA

µ
5 γ̂5

− A2
5 + ϕ2 − ϕ2

5 + 2iϕϕ5γ̂5 + 2m(ϕ+ iϕ5γ̂5)

−
√
2ψµ∂µϕ+

√
2iẋµψ

µϕ5γ̂5 − 2
√
2ψµA

µ
5ϕ5 . (3.30)

Remarkably, the time slicing counterterms have the effect of removing all explicitD-dependence
from the worldline action! With respect to the shifted field variables we get

L(τ) + VTS =
1

4
ẋ2 +

1

2
ψµψ̇

µ + iẋµÃµ − iψµF̃µνψ
ν − 2iẋµψµψνÃ

ν
5 γ̂5 + i∂µÃ

µ
5 γ̂5

−
√
2ψµ∂µϕ̃+ 2mϕ̃+ ϕ̃2 − Ã2

5 . (3.31)

Notice there is now no longer a ϕ̃2
5 contribution.

4. Worldline calculation of the heat-kernel expansion

4.1. Worldline path-integration rules
With the worldline Lagrangian in hand, we can now apply the usual worldline machinery

[47, 12] to calculate the heat-kernel expansion of the effective action. First, the zero mode
of the coordinate path integral is fixed by splitting xµ(τ) = xµ0 + q

µ(τ) with the loop average
position xµ0 ≡ 1

T

∫ T
0
dτ xµ(τ). Then all external fields are Taylor-expanded about x0, resulting

in Gaussian path integrals that can be evaluated by Wick contractions using the elementary
correlator

⟨qµ(τ)qν(τ ′)⟩ = −G(τ, τ ′)δµν , (4.1)

with the “string-inspired” Green’s function adapted to the space orthogonal to the zero mode

G(τ, τ ′) = |τ − τ ′| − (τ − τ ′)2

T
. (4.2)

As we already mentioned above, the evaluation of the Grassmann path integral depends on
whether a given insertion under the path integral is of even or odd parity, that is, whether
it has an even or odd number of γ̂5 factors. In the even case the Grassmann path integral is
computed with anti-periodic boundary conditions like in the familiar QED case, using the
worldline correlator

⟨ψµ(τ1)ψν(τ2)⟩ =
1

2
GF (τ, τ

′)δµν , GF (τ, τ
′) = sgn(τ − τ ′) , (4.3)

and the free path integral over the ψ’s gives 2
D
2 , since it is nothing but the trace of the

identity in the fermionic Hilbert space, i.e. the number of spinorial components of a Dirac
field.
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In the parity-odd case, however, the boundary conditions on the Grassmann path integral
become periodic, so that one now encounters a fermionic zero mode, which must be removed
before executing the path integral by factorising the Hilbert space of periodic Grassmann
functions into the constant functions ψ0 and their orthogonal complement ξ(τ),∫

P

Dψ =

∫
dψ0

∫
Dξ , (4.4)

ψµ(τ) = ψµ0 + ξµ(τ) , (4.5)
1

T

∫ T

0

dτ ξ(τ) = 0 . (4.6)

The zero mode integration then produces a Levi-Civita tensor,∫
d4ψ0 ψ

µ
0ψ

ν
0ψ

κ
0ψ

λ
0 = εµνκλ , (4.7)

(respectively its D-dimensional generalisation) whose appearance is expected in the parity-
odd case. The path integral over ξ has to be performed using the correlator

⟨ξµ(τ) ξν(τ ′)⟩ = δµν
〈
τ |
( d

dτ

)−1

|τ ′
〉
SI

= δµν
1

2
Ġ(τ, τ ′) (4.8)

and the free path integral over ξ is normalised to unity.
It is important to emphasise that calculating the expansion (2.8) of the diagonal elements

of the heat-kernel in this way will, in general, produce expansion coefficients that differ from
the “standard” heat-kernel ones by certain total-derivative terms [42]. This is an effect of
the “string-inspired” Green’s function (4.2) and could be avoided by instead using the one
corresponding to Dirichlet boundary conditions [10],

∆(τ, τ ′) =
|τ − τ ′|

2
− τ + τ ′

2
+
ττ ′

T
. (4.9)

However, higher-order calculations in scalar and gauge theories have shown [41, 42] that the
use of the string-inspired Green’s function is generally preferable since it avoids the breaking
of Bose symmetry which makes it easier to reduce the result to a minimal basis of invariants.

4.2. Heat kernel expansion
Consulting the heat kernel coefficients provided in the Appendix, we have verified that

this procedure correctly reproduces all the terms given in (A.2). However, let us show some
examples that illustrate some of the novel aspects of our approach here. We fix m = 0 in
this section for consistency with the calculations presented in the Appendix.

Firstly, we demonstrate one of the unusual terms linear in Grassmann variables: the first
term on the last line of the worldline action (3.30), that at quadratic order contributes to
2

D
2
−1(∂ϕ)2 ⊆ a2. Expanding the exponential in (3.1), the contributing term is4

2
D
2

〈
P
(∫ T

0

dτ ψ(τ) · ∂ϕ(x0)
)2〉

= 2
D
2
+1

∫ T

0

dτ

∫ τ

0

dτ ′
〈
ψµ(τ)ψν(τ ′)

〉
∂µϕ∂νϕ . (4.10)

4Note that there is no contribution to a2 from expanding the ϕ2(x(τ)) term in the action to first order
about x0, since this provides an orbital contraction ⟨qµ(τ)qν(τ)⟩ = −ηµνG(τ, τ) = 0.

12



With anti-periodic boundary conditions the contraction of fields gives 1
2
δµνσ(τ − τ ′) → 1

2
δµν

and so the integral evaluates to T 2

4
δµν , reproducing the correct result for this heat kernel

coefficient (without the path ordering, the coefficient would have vanished). The same works
for the term term in a2 proportional to ϕ2ϕ2

5. This time there are several contributions:

• From the cross-term from expanding the ϕ2 and ϕ2
5 terms in (3.30) to first order:

−2
D
2

∫ T
0
dτ ϕ2

∫ T
0
dτ ′ ϕ2

5 = −2
D
2 T 2ϕ2ϕ2

5.

• From expanding the ϕϕ5 term in the action to second order:
−2

D
2
+1
( ∫ T

0
dτ ϕϕ5

)2
= −2

D
2
+1T 2ϕ2ϕ2

5.

• From the cross term from expanding the ϕ2 term to first order and the ϕ5γ̂5 term to
second order. Now the path ordering is needed again, and a sign is picked up from
anti-commuting a γ̂ past a ψ:
−2

D
2
+1

∫ T
0
dτ ϕ2

∫ T
0
dτ ′

∫ τ ′
0
dτ ′′

〈
ẋ(τ ′) · ψ(τ ′) ẋ(τ ′′) · ψ(τ ′′)

〉
.

The contractions provide D
2
G̈(τ, τ ′)σ(τ−τ ′), which for reasons outlined below provides

only a −D
T

, so that overall this contribution evaluates to 2
D
2 DT 2ϕ2ϕ2

5.

Putting these contributions together correctly reproduces the coefficient 2
D
2 T 2(D − 3)ϕ2ϕ2

5.
Already this calculation has thrown up a question of how to define the path integral

computation properly. In order to check the validity of our construction it is now time to
show how the Time Slicing regularisation and its associated counterterms resolve ambiguities
that can arise (specifically with ill-defined products of distributions). So here we carry
out further tests based on the heat-kernel coefficients given in the Appendix, focussing in
particular on those which receive corrections from the worldline counterterms. It is sufficient
to verify the axial terms present in the a1 coefficient in the heat kernel expansion (i.e. A2

5

and ϕ2
5), and the term ϕ5A

µ
5∂µϕ, which is part of the a2 coefficient – see Appendix A.

Let us first consider the ϕ2
5 term, which gets a contribution 2

D
2 from the quadratic term

in the worldline action, and a contribution from the vertex linear in ϕ5, taken at the second
order. The latter yields,

−2
D
2 (−

√
2i)2Dϕ2

5

∫ T

0

dτ

∫ τ

0

dτ ′G̈(τ − τ ′)
1

2
sgn(τ − τ ′) (4.11)

= 2
D
2
+1TDϕ2

5

∫ T

0

dτ

∫ τ

0

dτ ′
(
δ(τ − τ ′)− 1

T

)
sgn(τ − τ ′) (4.12)

(all fields are evaluated at x0). The previous integral would be ambiguous without a regu-
larisation prescription, since it involves a product of distributions. In the TS prescription
one treats the delta function and sign function as continuous limits of discretised expressions
(see, for example, [46]). In particular, in this case the delta term gives a vanishing contribu-
tion as it saturates the sign on the central point, and sgn(0) = 0 in Time Slicing. We thus
get 2

D
2 (−DT )ϕ2

5, which combined with the ϕ2
5 term mentioned above provides (stripping off

the factor of T to extract the heat kernel coefficient)

2
D
2 (−(D − 1))ϕ2

5 ⊆ a1 , (4.13)
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which matches the heat-kernel computation reported in the Appendix. Note that without
the ϕ2

5 counterterm the contribution (4.12) would have been multiplied by −(D− 1) and we
would not have reproduced the expected result.

Secondly we consider the A2
5 term, which in the worldline approach gets the following

contributions

2
D
2

{
TA2

5 +
1

2
δµµ

′
∫ T

0

dτ

∫ T

0

dτ ′G̈(τ − τ ′)(δµµ′δνν′ − δνµ′δµν′)G
2
F (τ − τ ′)Aν5A

ν′

5

}
=2

D
2 TA2

5

{
1 +

(D − 1)

T

∫ T

0

dτ

∫ T

0

dτ ′
(
δ(τ − τ ′)− 1

T

)
sgn2(τ − τ ′)

}
, (4.14)

where again the delta function part yields a vanishing contribution. The leftover term is
unambiguous and the final result thus reads,

2
D
2 (−(D − 2))A2

5 ⊆ a1 , (4.15)

which coincides with the heat kernel derivation – again we strip off the T factor to single
out the contribution to the heat-kernel coefficient. Note for the second time that the A2

5

counterterm is critical so that the contribution of the first term in (4.14) comes with the
correct relative factor.

Finally let us consider a test for the third contribution to the counterterm. Obviously
the latter does not contribute to a1 as the v.e.v. of a single ψ vanishes. Indeed there are no
terms involving both Aµ5 and ϕ5 in a1. The next simplest term to consider is ϕ5A5 ·∂ϕ which
is part of a2. This term comes from two contributions from the worldline path integral with
action (3.30). The first one is the two-vertex contribution,

2
D
2 2! 4

∫ T

0

dτ

∫ τ

0

dτ ′
〈
ψµ(τ)ψµ

′
(τ ′)

〉
∂µϕA5µ′ = 2

D
2 2ϕ5A5 · ∂ϕT 2 . (4.16)

The second-one is the three-vertex contribution,

2
D
2 3! 4

∫ T

0

dτ

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′
〈
ẋµψµψν(τ)ψ

µ′(τ ′) ẋµ
′′
ψµ′′(τ

′′)
〉
Aν5 ∂µ′ϕϕ5

= 2
D
2 3!

∫ T

0

dτ

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′G̈(τ − τ ′′)sgn(τ − τ ′)sgn(τ − τ ′′)(D − 1)ϕ5A5 · ∂ϕ

= −2(D − 2)ϕ5A5 · ∂ϕT 2 , (4.17)

where, once again, by TS rules, the delta function inside G̈ does not contribute. The integral
over the simplex cancels the 3!, and stripping off the T 2 factor as usual, we are thus left
with

2
D
2 (−2(D − 1))A5 · ∂ϕ ⊆ a2 , (4.18)

which again matches the heat kernel computation.
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5. Amplitudes and vertex operators

Somewhat more work is required to obtain the (one-particle irreducible) one-loop scat-
tering amplitudes for external scalar, pseudoscalar, vector and axialvector particles from the
effective action. To obtain the amplitudes in the worldline formalism, we must extract them
from an appropriate linearisation of the effective action after specialising the background
fields to plane waves representing the asymptotic states of the particles.

5.1. Linearisation and vertex operators
From a systematic point of view, it will be useful to first linearise the various non-linear

terms in the Lagrangian, being the last two terms in the version (3.31). Introducing auxiliary
fields z(τ) and Zµ(τ), we can rewrite

exp
[
−
∫ T

0

dτ ϕ̃2
]

=

∫
Dz(τ) exp

[
−
∫ T

0

dτ
(z2
4

+ izϕ̃
)]

exp
[
+

∫ T

0

dτ Ã2
5

]
=

∫
DZ(τ) exp

[
−
∫ T

0

dτ
(Z2

4
+ Z · Ã5

)]
.

(5.1)

The Wick contraction rules for these auxiliary fields are simply

⟨z(τ)z(τ ′)⟩ = 2δ(τ − τ ′)

⟨Zµ(τ)Zν(τ ′)⟩ = 2δµνδ(τ − τ ′) ,

(5.2)

and their free path integrals are normalised to unity.
Choosing plane-wave background fields with the conventions

ϕ(x) =
Ns∑
i=1

eipi·x

ϕ5(x) =

Np∑
j=1

eip5j ·x

Aµ(x) =

Nγ∑
k=1

εµk e
ikk·x

Aµ5(x) =
Na∑
l=1

εµ5l e
ik5l·x

(5.3)

allows us to obtain amplitudes by projecting the effective action onto the multi-linear sector
with respect to the particles participating in the scattering process. As in string theory,
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doing this leads to the following expressions for scalar (‘s’), pseudoscalar (‘p’), vector (‘γ’),
and axialvector (‘a’) vertex operators that end up being inserted under the worldline path
integral:

V s
spin[p] =

∫ T

0

dτ
[
z −

√
2p · ψ − 2mi

]
eip·x , (5.4)

V p
spin[p5] =

∫ T

0

dτ
[
γ̂5
(
iz −

√
2ẋ · ψ + 2m

)
− i

√
2Z · ψ

]
eip5·x , (5.5)

V γ
spin[k, ε] =

∫ T

0

dτ
[
ε · ẋ− iψ · f · ψ

]
eik·x , (5.6)

V a
spin[k5, ε5] =

∫ T

0

dτ
[
γ̂5
(
iε5 · k5 + 2ε5 · ψẋ · ψ

)
− i ε5 · Z

]
eik5·x (5.7)

where fµν := kµεν − εµkν . These definitions allow us to represent the one-loop amplitude
with Ns scalars, Np pseudoscalars, Nγ vectors and Na axialvectors in the following way:

Γ[{pi}, {p5j}, {kk, εk}, {k5l, ε5l}] = −1

2
(−ig)Ns(−ig5)Np(−ie)Nγ (−ie5)Na

×
∫ ∞

0

dT

T
e−m

2T

∫
DxDψDzDZ e−

∫ T
0 dτ( ẋ

2

4
+ 1

2
ψ·ψ̇+ z2

4
+Z2

4
)

× P
Ns∏
i=1

V s
spin[pi]

Np∏
j=1

V p
spin[p5j]

Nγ∏
k=1

V γ
spin[kk, εk]

Na∏
l=1

V a
spin[k5l, ε5l]

(5.8)

where we have now also reinstated the coupling constants. The action of the path-ordering
operator on a product of N vertex operators can be defined as

P(V1 · · ·VN) =
∑
π∈SN

Vπ(1) · · ·Vπ(N)θ(τπ(1) − τπ(2)) · · · θ(τπ(N−1) − τπ(N)) , (5.9)

with θ the Heaviside function and SN the permutation group on N objects.

5.2. Summary of evaluation rules
In the parity-even case, the perturbative evaluation of all the path integrals, including

the Grassmann one, proceeds in the same way as in spinor QED. We can without further
ado rewrite the amplitude in terms of Wick contractions:

Γ[{pi}, {p5j}, {kk, εk}, {k5l, ε5l}] = −2(−ig)Ns(−ig5)Np(−ie)Nγ (−ie5)Na

×
∫ ∞

0

dT

T

e−m
2T

(4πT )
D
2

〈
P

Ns∏
i=1

V s
spin[pi]

Np∏
j=1

V p
spin[p5j]

Nγ∏
k=1

V γ
spin[kk, εk]

Na∏
l=1

V a
spin[k5l, ε5l]

〉
.

(5.10)
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We leave it as understood that in the vertex operators the original path-integral variable
x(τ) has to be expanded about the loop centre of mass with the fluctuation variable q(τ).
The former is integrated out and yields the overall energy-momentum conservation factor
(2π)Dδ(

∑
i pi+

∑
j p5j +

∑
k kk+

∑
l k5l), which we suppress, while the latter is to be Wick-

contracted according to (4.1). The spin variable ψ(τ) is contracted by the familiar (4.3),
and the contraction rules for the auxiliary variables have been given in (5.2). Although
the formalism is still valid in all even dimensions, we have now specialized it to the four-
dimensional case, keepingD floating only as fas as is necessary for dimensional regularization.
Thus we have fixed the spin degrees of freedom to be 22, but we retain D = 4−2ϵ dimensions
for the orbital degrees of freedom.

In the parity-odd case we have to deal with the fermionic zero mode as described in the
previous section. The formula analogous to (5.10) becomes

Γ[{pi}, {p5j}, {kk, εk}, {k5l, ε5l}] = −1

2
(−ig)Ns(−ig5)Np(−ie)Nγ (−ie5)Na

×
∫ ∞

0

dT

T

e−m
2T

(4πT )
D
2

∫
d4ψ0

〈
P

Ns∏
i=1

V s
spin[pi]

Np∏
j=1

V p
spin[p5j]

Nγ∏
k=1

V γ
spin[kk, εk]

Na∏
l=1

V a
spin[k5l, ε5l]

〉
,

(5.11)

where the zero-mode integral has to be done according to (4.7), and the fermionic Wick
contractions using (4.8).

Introducing some auxiliary Grassmann variables, it would be quite possible to arrive at
closed-form master expressions for the Wick contractions in (5.10) and (5.11) (for the pure
vector - axial-vector case this has been done in [25]). However, the procedure is lengthy,
and we leave it for future work. Here, we will be satisfied with working out a number of
examples.

6. Some parity-even amplitudes

Let us start with the simpler parity-even case. At the two-point level, we will calculate
the vacuum polarisation amplitudes for scalars and pseudoscalars and redo the axial-vector
two-point function presented in [25]) with the Time Slicing compensated vertex operators
(the calculation of the vector one is well-known [6, 12]). As a three-point example, we will
also compute the scalar-vector-vector amplitude.

6.1. Scalar vacuum polarisation
The Wick contraction of two scalar vertex operators (5.4) yields (with appropriate path

ordering)

〈
PV s

spin[p1]V
s
spin[p2]

〉
= 2

∫ T

0

dτ1

∫ τ1

0

dτ2

[
2δ12 + p1 · p2GF12 − 4m2

]
eG12p1·p2 .

(6.1)
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As usual in two-point calculations, we use momentum conservation to set p = p1 = −p2,
rescale τi = Tui, and perform the T -integration. Using now also the identity∫ 1

0

du1

∫ u1

0

du2 f(u1 − u2) =
1

2

∫ 1

0

duf(u) +
1

2

∫ 1

0

duu
[
f(1− u)− f(u)

]
(6.2)

which holds for any function f(u), we get

Γss[p] = 2
g2

(4π)
D
2

{
2Γ

(
1− D

2

)
mD−2 − Γ

(
2− D

2

)∫ 1

0

du
p2 + 4m2[

m2 + u(1− u)p2
]2−D

2

}
.

(6.3)

In this form it can be easily checked that it agrees with the result of the Feynman diagram
calculation.

6.2. Pseudoscalar vacuum polarisation
The Wick contraction of two pseudoscalar vertex operators (5.5) produces (omitting the

subscript ‘5’ on the momenta)

〈
PV p

spin[p1]V
p
spin[p2]

〉
= 2

∫ T

0

dτ1

∫ τ1

0

dτ2

[
4m2 − 2δ12 −

(
DG̈12 + Ġ2

12p1 · p2
)
GF12

]
eG12p1·p2 .

(6.4)

Note that here a minus sign had to be included for the terms involving ψ since, before using
γ̂25 = 1l, one of the γ̂5 had to be anticommuted with a ψ. As in the calculation of the heat
kernel coefficients we must deal with the ambiguity of the product of distributions in the
G̈12GF12 ⊃ δ(τ1 − τ2)sgn(τ1 − τ2). We have seen that in Time Slicing regularisation, these
should be understood as the continuum limits of discrete δ and sign functions, for which
sgn11 = 0. Hence the δ function in G̈12 will not contribute and should be omitted. Having
resolved this we may fix the sign functions and work in the continuum limit:

〈
PV p

spin[p1]V
p
spin[p2]

〉
= 2

∫ T

0

dτ1

∫ τ1

0

dτ2

[
4m2 − 2δ12 −

(
D(G̈12 − 2δ12) + Ġ2

12p1 · p2
)]

eG12p1·p2 .

(6.5)

Performing an integration-by-parts on the term involving Ġ2
12 turns it into a G̈12, with which

the right-hand side can be simplified to

2

∫ T

0

dτ1

∫ τ1

0

dτ2

[ 2
T
(D − 1) + 4m2

]
eG12p1·p2 .

(6.6)
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Proceeding as in the scalar case, we then arrive at

Γpp[p] = 2
g25

(4π)
D
2

{
2(D − 1)Γ

(
1− D

2

)∫ 1

0

du
1[

m2 + u(1− u)p2
]1−D

2

+Γ
(
2− D

2

)∫ 1

0

du
4m2[

m2 + u(1− u)p2
]2−D

2

}
. (6.7)

Again this result is in agreement with the Feynman diagram calculation.

6.3. Axialvector vacuum polarisation
The axial-vector vacuum polarisation was calculated using naive worldline vertex opera-

tors in [25]), that is without the Time Slicing path integral regularisation and counterterms.
Here we present the calculation with these amendments, ultimately finding the same result
as in [25].

The contraction of two axial-vector vertex operators provides

〈
V a
spin[k1]V

a
spin[k2]

〉
=

∫ T

0

dτ1

∫ T

0

dτ2

[
ε1 · ε1

(
(D − 1)G̈12 sgn12 sgn21 − 2δ12

)
+ ε1 · k1ε2 · k2

(
Ġ12Ġ21 sgn12 sgn21 − 1

)
− ε1 · ε2k1 · k2Ġ12Ġ21 sgn12 sgn21

]
eG12k1·k2 (6.8)

where the γ̂5s squared to the identity. In the first term under the integral, Time Slicing
implies that δ(τ1 − τ2)sgn

2(τ1 − τ2) = 0 so we arrive at

〈
V a
spin[k1]V

a
spin[k2]

〉
=

∫ T

0

dτ1

∫ T

0

dτ2

[
ε1 · ε1

( 2

T
(D − 1)− 2δ12

)
+ ε1 · k1ε2 · k2

(
Ġ12Ġ21 sgn12 sgn21 − 1

)
− ε1 · ε2k1 · k2Ġ12Ġ21 sgn12 sgn21

]
eG12k1·k2 (6.9)

This result was also obtained in [25], but there the vertex operator included an additional
prefactor of

√
D − 2 in front of the “Z” term leading to the solo δ12 in (6.9). However, there

the δ(τ1−τ2)sgn2(τ1−τ2) was taken to be δ(τ1−τ2). Together this provided ε1 ·ε2
(
2(D−2)−

(D − 1)
)
δ12 = −2ε1 · ε2δ12 as obtained above, so the lack of counter term was compensated

for by the naive treatment of distributions.
If we now use momentum conservation to set k1 = k = −k2 and use the time translation

invariance to set τ2 = 0 we get a vacuum polarisation tensor by stripping off the polarisation
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vectors:

Γµνa [k] = 2e25

∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2T
{
− 2Tδµν

+

∫ T

0

dτ e−τ(1−
τ
T
)k2

[
2(D − 1)δµν +

(
1− 2

τ

T

)2
T
(
δµν − kµkν

)
+ Tkµkν

]}
.

(6.10)

It is now easy to check that in the massless case (a) the first term on the RHS corresponds to
a tadpole contribution, which vanishes in dimensional regularisation, and (b) the remaining
terms reproduce the vacuum polarisation tensor for the vector boson (as to be expected
from the chiral symmetry in the parity even case). Equivalence with the Feynman diagram
calculation in the massive case was shown in [25].

6.4. Scalar-Vector-Vector (SV V ) amplitude
Let us now proceed to a three-point example, the amplitude with one scalar and two

photons. Although the scalar vertex operator (5.4) consists of three terms, it is clear that
in this constellation only the one involving m can contribute, since we can Wick contract
neither a single z nor an odd number of ψ’s. Thus (5.10) reduces to

Γγγs(p; k1, ε1; k2, ε2) = −2(−ig)(−ie)2
∫ ∞

0

dT

T

e−m
2T

(4πT )2

〈
V γ
spin[k1, ε1]V

γ
spin[k2, ε2]V

s
spin[p]

〉
.

(6.11)

Note that we have dropped the path ordering, since this amplitude does not involve terms
linear in ψ, and have also set D = 4, since this amplitude is finite. Wick contraction gives

⟨V γ
1 V

γ
2 V

s
3 ⟩ = (−2mi)

3∏
i=1

∫ T

0

dτi

{
G̈12ε1 · ε2 −

(
Ġ12ε1 · k2 + Ġ13ε1 · p

)(
Ġ21ε2 · k1 + Ġ23ε2 · p

)
−G2

F12

1

2
tr(f1f2)

}
eG12k1·k2+G13k1·p+G23k2·p . (6.12)

We now go on-shell, and fix the helicities of the photons using the standard spinor-helicity
formalism (see, e.g., [48, 49]). For opposite helicities, using spinor helicity with reference
momenta r1,2 = k2,1 leads to

ε1 · k2 = ε2 · k1 = ε1 · ε2 = 0 , (6.13)

and thus to the vanishing of (6.12) after eliminating p through momentum conservation.
For equal helicities, we use the same reference momenta, which still leads to the vanishing

of ε1 · k2 and ε2 · k1, but now ε1 · ε2 survives. Using the on-shell relations

k21 = k22 = 0, p2 = −m2
s, (6.14)
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as well as momentum conservation we have

k1 · p = k2 · p = −k1 · k2 =
m2
s

2
. (6.15)

With these relations, we have

tr(f1f2) = m2
s ε1 · ε2 (6.16)

and the exponent in (6.12) simplifies to

G12k1 · k2 +G13k1 · p+G23k2 · p =
(
G13 +G23 −G12

)m2
s

2
.

The prefactor can still be homogeneised, removing the G̈12 by an integration-by-parts. It
then turns into {}

→ ε1 · ε2m2
s

[
1

2

(
Ġ2

12 −G2
F12

)
+

1

4
Ġ12

(
Ġ23 − Ġ13

)]
. (6.17)

Rescaling τi = Tui, eliminating the T -integral, and introducing the ratio τs ≡ m2
s

4m2 , we have

Γ(p; k1, ε
±
1 ; k2, ε

±
2 ) = −α

π
g
m2
s

m
ε±1 · ε±2 ISV V (τs) ,

ISV V (τs) ≡
∫ 1

0

du1

∫ 1

0

du2

∫ 1

0

du3

1
2

(
Ġ2

12 −G2
F12

)
+ 1

4
Ġ12

(
Ġ23 − Ġ13

)
1− 2

(
G13 +G23 −G12

)
τs

.

(6.18)

Using the spinor-helicity formalism we can easily calculate

ε+1 · ε+2 =
[12]

⟨12⟩
, ε−1 · ε−2 =

⟨12⟩
[12]

. (6.19)

In the integral ISV V (τs), we use the translation invariance to set u3 = 0, and the symmetry
1 ↔ 2 to write

∫ 1

0
du1

∫ 1

0
du2 = 2

∫ 1

0
du1

∫ u1
0
du2. Writing out the worldline Green’s functions

yields

ISV V (τs) = 2

∫ 1

0

du1

∫ u1

0

du2
(u1 − u2)

2 − 3
2
(u1 − u2)

1− 4u2(1− u1)τs
. (6.20)

This integral can be calculated by expanding out the denominator as a geometric series,
integrating term-by-term, and resumming. Restricting ourselves now to 0 ≤ τs ≤ 1, the
result can be written as

ISV V (τs) = −1

2

τs − (1− τs) arcsin
2√τs

τ 2s
. (6.21)
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In the standard model, this amplitude is important for the decay of the Higgs boson into
two photons. Even more important are, however, the decay of the Higgs into two gluons,
and the inverse process of Higgs production by gluon fusion. Although the extension of the
formalism developed in this chapter to the non-abelian case would require more work, for
the case at hand it is trivial, since with only two gluons attached to the fermion loop the
only difference to the photon case will be an additional global colour trace tr

(
T a1T a2

)
. For

example, to get the absolute value of the matrix element for Higgs production by gluon
fusion with a top-quark loop, we note from (6.19) that

∣∣ε+1 · ε+2
∣∣ = ∣∣ε−1 · ε−2

∣∣ = 1 and use that
for quarks tr

(
T a1T a2

)
= 1

2
δa1a2 . Therefore

|Γ(p; k1, ε±1 ; k2, ε±2 )| = δa1a2
αs
2π
gHm

−1
t m2

H ISV V (τH) (6.22)

where now τH =
m2

H

4m2
t

and gH = mt

√√
2GF .

7. Some parity-odd amplitudes

Let us now consider some parity-odd amplitudes.

7.1. Pseudoscalar-Vector-Vector (PV V ) amplitude
We start with something simple, namely the three-point amplitude with one pseudoscalar

and two vectors. It is straightforward because we cannot Wick contract terms containing
an odd number of z, Zµ or ψµ, so that only the mass term can be used in the pseudoscalar
vertex operator (5.5). And the saturation of the zero mode forces us to use the spin part in
both vector vertex operators (5.6). Thus the general formula (7.3) here reduces to

Γ(p5, {k1, ε1}, {k2, ε2}) = −1

2
(−ig5)(−ie)2(2m)(−i)2

∫ ∞

0

dT

T

e−m
2T

(4πT )2

×
∫
d4ψ0

〈∫ T

0

dτ5 eip5·x5
∫ T

0

dτ1 ψ1 · f1 · ψ1 eik1·x1
∫ T

0

dτ2 ψ2 · f2 · ψ2 eik2·x2
〉
.

(7.1)

Note that we have set D = 4, since the amplitude is finite, and we have discarded the path
ordering operator, since no terms linear in ψµ are involved. A single global factor of γ̂5 has
been taken care of by the periodic boundary conditions. Further, the necessity of saturating
the fermionic zero-mode integral requires us to always use the ψµ0 after the split (4.5). Doing
so, and using the zero-mode integral (4.7), we arrive at

Γ(p5, {k1, ε1}, {k2, ε2}) = ig5e
2mεαβγδf

αβ
1 fγδ2

∫ ∞

0

dT

T

e−m
2T

(4πT )2〈∫ T

0

dτ5 eip5·x5
∫ T

0

dτ1 eik1·x1
∫ T

0

dτ2 e
ik2·x2

〉
.

(7.2)
22



Thus the integral that remains to be computed is simply the scalar three-point function.
This object is easy enough to compute off-shell, but let us now go on-shell with the specific
application to axion or pion decay into two photons in mind. The on-shell conditions are
the same as in the scalar case above, just with the scalar mass and momentum replaced by
the pseudoscalar ones, and the integral ISV V gets replaced by

IPV V (τp) ≡
∫ 1

0

du1

∫ 1

0

du2

∫ 1

0

du3
1

1− 2
(
G13 +G23 −G12

)
τp

=
arcsin2√τp

τp
,

(7.3)

where now τp ≡
m2

p

4m2 . The final result becomes

Γ(p5, {k1, ε1}, {k2, ε2}) =
ig5e

2

(4π)2
εαβγδf

αβ
1 fγδ2
m

arcsin2√τp
τp

. (7.4)

Note that this is imaginary, but only as an artefact of our euclidean conventions.

7.2. Five pseudoscalar (PPPPP ) amplitude
Next, let us look at an example of a parity-odd amplitude with only Yukawa couplings.

According to (7.3), any parity-odd amplitude will have a global epsilon tensor generated by
the zero mode of the Grassmann path integral. This tensor must be saturated by four linearly
independent Lorentz vectors, which for a purely scalar amplitude can only be momentum
vectors, and because of momentum conservation four linearly independent momentum vec-
tors can exist only starting from the five-point case. Thus we will now have a look at
the amplitude with five pseudoscalars, albeit restricted to the low-energy limit to make a
completely explicit calculation feasible.

For this case, (7.3) produces (dropping the subscript ‘5’ on the momenta)

Γ[p1, . . . , p5] = −1

2
(−ig5)5

∫ ∞

0

dT

T

e−m
2T

(4πT )2

∫
d4ψ0

〈
P

5∏
j=1

V p
spin[pj]

〉
. (7.5)

Looking at the pseudoscalar vertex operator (5.5), it becomes clear that, to have a chance
of saturating the fermionic zero-mode integral, we have to pick the terms involving ψ in
four of the vertex operators, say, for legs one to four, and, since a single z or ξ cannot be
Wick contracted, the mass term in the fifth. Moreover, we cannot use the term involving
ψ together with Z, since Wick contraction of the latter would produce a pinch that would
make two momenta merge, thereby reducing the number of linearly independent momenta
from four to three. Thus the Wick contraction in (7.5) can be written as

〈
P

5∏
j=1

V p
spin[pj]

〉
= 2m(−

√
2)4

〈
P

4∏
j=1

(
γ̂5

∫ T

0

dτj ẋj · ψj eipj ·xj
)
γ̂5

∫ T

0

dτ5 e
ip5·x5

〉
+Perm. (7.6)
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where “Perm.” stands for the remaining four possibilities to choose the leg with the mass
term. Further, as in the previous example the necessity of saturating the fermionic zero-
mode integral requires us to always use the ψµ0 after the split (4.5). We are then ready to
perform that integral. Combining (7.5) and (7.6), we get

Γ(p1, . . . , p5) = 4ig55mεαβγδ

∫ ∞

0

dT

T

e−m
2T

(4πT )2

∫ T

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4

∫ T

0

dτ5

×
〈
ẋα1 e

ip1·x1ẋβ2 e
ip2·x2ẋγ3 e

ip3·x3ẋδ4 e
ip4·x4 eip5·x5

〉
+ Perm. (7.7)

Note that we have also got rid of the γ̂5 factors, annihilating them in pairs and using the
surviving one to change the boundary conditions from antiperiodic to periodic. The path
ordering has been taken care of by taking legs 1 to 4 in the standard ordering τ1 ≥ τ2 ≥ τ3 ≥
τ4 (let us reiterate that we do not have the option to use translation invariance to set one
of the τi equal to zero) and to include in “Perm.” a sum over all the other ordered sectors
(there is no need to include leg 5 in the ordering, since it did not involve ψµ). That sum has
to be done non-alternatingly, which is contrary to what one would conclude by looking at
(7.7) itself, but clear from (7.6) above where the presence of the γ̂5 factors still ensures the
correct Bose statistics with respect to permutations of the pseudoscalars.

After the removal of the bosonic zero-mode we perform the Wick contractions. Contrac-
tions between the q̇µj ’s can be discarded since they produce δµν factors Lorentz-contracted
with the epsilon tensor. Thus all q̇µj ’s have to be contracted into the exponential factors,
where moreover terms containing the same pj twice can be omitted. This leads to

Γ(p1, . . . , p5) = 4ig55mεαβγδ

∫ ∞

0

dT

T

e−m
2T

(4πT )2

∫ T

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4

∫ T

0

dτ5

×
∏
a̸=1

Ġ1ap
α
a

∏
b̸=2,a

Ġ2bp
β
b

∏
c ̸=3,a,b

Ġ3cp
γ
c

∏
d̸=4,a,b,c

Ġ4dp
δ
d e

1
2

∑5
i,j=1Gijpi·pj

+ Perm. (7.8)

This is still an exact result. However, the exact calculation of five-point integrals is laborious,
and we will settle for the leading term in the low-energy (“LE”) approximation, being the
contribution that is multi-linear also in the 5 particle momenta. This is obtained from (7.8)
simply by replacing the universal exponential factor by unity.

Following this, we then can also discard in the integrand all the terms linear in p5, since
their only dependence left on the variable u5 is through a single factor of Ġj5, so that they
will vanish upon integration in u5. Thus that integration will now simply produce a factor
of T . Performing also the usual rescaling τi = Tui for the other four legs, and computing
the T -integral, we remain with

Γ(LE)(p1, . . . , p5) = 4ig55mεαβγδp
α
1p

β
2p

γ
3p

δ
4

2!

(4π)2m6

∫ 1

0

du1

∫ u1

0

du2

∫ u2

0

du3

∫ u3

0

du4

×
[
Ġ2

12Ġ
2
34 + Ġ2

13Ġ
2
24 + Ġ2

14Ġ
2
23 − 2Ġ12Ġ23Ġ34Ġ41 − 2Ġ12Ġ24Ġ43Ġ31

−2Ġ13Ġ32Ġ24Ġ41

]
+ Perm. (7.9)
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The total u-integral in (7.9) yields a factor of 1
120

. Now, another advantage of the low-energy
approximation is that here (but not in general) the 4! permutations of legs 1 to 4 all con-
tribute equally. And the same holds true for the final summation over the five possibilities of
choosing the leg with the mass term, since, defining ε(p, q, k, l) := εαβγδp

αqβkγlδ, momentum
conservation implies that ε(p1, p2, p3, p4) = ε(p2, p3, p4, p5) = etc.

This brings us to our final result for the low-energy limit of the amplitude:

Γ(LE)(p1, . . . , p5) = 4ig55m
2!

(4π)2m6

4! · 5
120

ε(p1, p2, p3, p4) =
ig55
2π2

ε(p1, p2, p3, p4)

m5
.

(7.10)

Once more we leave it to the sceptical reader to verify that the same is obtained with the
standard formalism.

7.3. Vector-vector-axialvector (V V A) amplitude and chiral anomaly
Finally, let us consider the vector–vector–axial-vector amplitude. In the standard for-

malism, this one is given by the famous “triangle diagrams”, shown in Fig. 1, that in
four-dimensional gauge theory give rise to the chiral anomaly and the PCAC (“partially
conserved axial current conservation”) relation.

A

V

V

+ A

V

V1

21

2

Figure 1: Sum of anomalous triangle diagrams in field theory.

For the purpose of deriving that relation, it is sufficient to compute the correlator with
the axial-vector replaced by its divergence, V V ∂ · A5. In momentum space, the master
formula yields for this quantity the following parameter integral,

Γ({k1, ε1}, {k2, ε2}, {k5, ε5 = ik5}) = −1

2
(−ie)2(−ie5)

×
∫ ∞

0

dT

T

e−m
2T

(4πT )2

∫
d4ψ0

〈
V γ
spin[k1, ε1]V

γ
spin[k2, ε2]V

a
spin[k5, ik5]

〉
.

(7.11)

Contrary to our previous examples, there are now various ways of saturating the epsilon-
tensor, and the ξ-correlator (4.8) also makes an appearance. Performing the zero-mode
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integral and Wick contractions, we find

Γ({k1, ε1}, {k2, ε2}, {k5, ε5 = ik5}) = − i

2
e2e5εαβγδf

αβ
1 fγδ2

∫ ∞

0

dT

T

e−m
2T

(4πT )2

3∏
i=1

∫ T

0

dτi

× exp
[(
G12 −G13 −G23

)
k1 · k2 −G13k

2
1 −G23k

2
2

]
×
{
(k1 + k2)

2 + (Ġ12 + Ġ23 + Ġ31)(Ġ13 − Ġ23)k1 · k2 − (G̈13 + G̈23)

}
.

(7.12)

Here we have also used momentum conservation to eliminate k5. Removing the second
derivatives G̈13 (G̈23) by a partial integration in τ1 (τ2), the expression in braces turns into

k1 · k2
{
2− (Ġ12 + Ġ23 + Ġ31)

2 + Ġ2
12 − Ġ2

13 − Ġ2
23

}
+ k21(1− Ġ2

13) + k22(1− Ġ2
23)

= − 4

T

[(
G12 −G13 −G23

)
k1 · k2 −G13k

2
1 −G23k

2
2

]
(7.13)

where in the last step we used the identities

Ġ2
ij = 1− 4

T
Gij , Ġij + Ġjk + Ġki = −GFijGFjkGFki . (7.14)

Remarkably, the expression in brackets is the same which appears in the exponent of (7.3)! In
the massless case, this leads after the T -integration to a total cancellation between numerator
and denominator that trivialises the ui - integrals, and one obtains without further effort
[25]

Γ({k1, ε1}, {k2, ε2}, {k5, ε5 = ik5})
∣∣
m=0

= − 2i

(4π)2
e2e5εαβγδf

αβ
1 fγδ2 . (7.15)

In the massive case, the result of the T - integration can be written as

Γ({k1, ε1}, {k2, ε2}, {k5, ε5 = ik5}) = −2i
e2e5
(4π)2

εαβγδf
αβ
1 fγδ2

×
3∏
i=1

∫ 1

0

dui
−
[(
G12 −G13 −G23

)
k1 · k2 −G13k

2
1 −G23k

2
2

]
m2 −

[(
G12 −G13 −G23

)
k1 · k2 −G13k21 −G23k22

] .
(7.16)

We then add and subtract m2 in the numerator. The first term produces the previous
massless result, and the second one can, up to a global factor, be identified with the
pseudoscalar-vector-vector amplitude (7.2). Stripping off the polarisation vectors, we get
the PCAC relation in the familiar form

kρ5⟨AµAνA5ρ⟩ = −2mi
e5
g5
⟨AµAνϕ5⟩+

8

(4π)2
e2e5 εµνκλk

κ
1k

λ
2 . (7.17)
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Note that in the present formalism we avoided splitting the amplitude into two diagrams as
well as the appearance of UV divergences, and the anomaly term appears unambiguously at
the axialvector current. This was to be expected, since the vectors are represented by the
usual QED photon vertex operator, which turns into the integral of a total derivative when
replacing the polarisation vector by the momentum one. Nothing like this holds true for the
axialvector vertex operator.

8. Conclusions and Outlook

In the present manuscript we have presented a novel worldline spinning point particle
path integral (3.30), which for the first time yields the complete effective action, real and
imaginary parts, of a Dirac particle simultaneously coupled to external scalar, pseudoscalar,
vector and pseudo-vector fields. The price which we have to pay for this property is the
non-Hermiticity of the kinetic operator in the exponent, and the presence of some unusual
terms with an odd number of Grassmann operators. On the one hand, this requires a specific
operator ordering in the worldline action; we use Weyl-ordering which is linked to the Time
Slicing regularisation of the path integrals, with its specific rules for the computation of
diagrams where a product of distributions arises. Furthermore, a path ordering is also
needed when terms with an odd number of Grassmann variables are involved. Unusually for
this flat-space context, the use of the Time Slicing regularisation has turned out to require
the addition of three counterterms to the worldline Lagrangian. Curiously, their explicit
calculation has led to the elimination of all explicit D - dependence from the worldline
Lagrangian, for which we have presently no explanation. The superrenormalisability of the
worldline theory guarantees that no further counterterm additions will be needed to any
order in perturbation theory, which is essential for the practical usefulness of the formalism.

Our sample calculations clearly show that, at least in perturbation theory, our treatment
yields the correct heat-kernel coefficients and amplitudes, while maintaining the usual ad-
vantages of the worldline formalism, such as representing amplitudes as a whole rather than
through individual Feynman diagrams [50, 51, 52], and the relative simplicity of accomo-
dating external fields [28, 29, 30, 31, 53, 54]. We have also seen that, although the vertex
operators used here generally give rise to a larger number of Wick contractions compared
to the more familiar gauge theory amplitudes, often a large part of these contractions can
be discarded already at an early stage of the calculation.

Since our final worldline Lagrangian (3.30) in the pure vector-axialvector case reduces to
the one of [24, 25], albeit with the addition of the counterterm (4.15), naturally the question
arises whether the existence of this counterterm does not invalidate some of the results of
[24, 25, 30, 31] where this Lagrangian was used. Fortunately this is not the case, and a
detailed comparison shows that in those calculations the omission of the counterterm was
compensated for by a different, naive treatment of the delta function contained in G̈ij. We
have shown this for the example of the axialvector vacuum polarisation in subsection 6.3.
However, further study will be required to see whether this equivalence is accidental to low-
order calculations, or can be extended to the full perturbation theory. Other alternatives to
Time Slicing ought to be investigated, too, above all the “Worldline Dimensional Regular-
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ization” scheme [55, 56, 57] which in recent years has become the preferred regularization
method for curved-space calculations.

A logical step beyond the present construction would be the extension to the open fermion
line, generalising the existing worldline representations for the pure vector background [29,
58, 59] (for the case of only the scalar coupling, a worldline treatment of the open fermion line
has been given in [60]). The worldline formalism can also be adapted to studying quantum
fields on manifolds with boundary and on non-commutative spaces [61, 62, 63, 64, 65, 66], as
well as to the treatment of quantum gravity itself [67, 68, 69, 70, 71] Moreover, the coupling
of the particle to non-abelian fields would certainly be another interesting extension, where
it is known how suitable auxiliary worldline fields can be introduced to treat the colour
structure and avoid a further path-ordering issue [72, 73, 74, 75, 76].

Alternatively to the worldline formulation, eqs. (2.7), (2.8) could also be used for writing
down a set of second-order Feynman rules generalising the ones of [25].
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Appendix A. Heat kernel coefficients

Here we show how the heat kernel coefficients of (2.9), denoted an(x, x), can be deter-
mined from the effective action (2.8), by reusing the well-studied heat-kernel expansion of a
non-abelian gauge theory [38, 43]. In this expansion the first coefficients are given by

a0 = tr I
a1 = −tr [a]

a2 = tr
[
1
2
a2 − 1

12
FµνF

µν
]

a3 = − 1
12
tr
[
2a3 + (Dµa)

2 − a FµνF
µν − 4

15
iFµνFνλFλµ −

1

10
(DλFµν)

2
]
,

(A.1)

where Fµν ≡ ∂µAν−∂νAµ+ i[Aµ,Aν ], Dµa ≡ ∂µa+ i[Aµ, a], and DλFµν ≡ ∂λFµν+ i[Aλ,Fµν ].
Let us work this out for the first two coefficients, settingm = 0 (without loss of generality,

since the general result can always be recovered by shifting ϕ −→ ϕ+m) but still maintaining
the dimensional regularisation. Taking the spinor dimension to be 2

D
2 for even D where a
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nontrivial γ5 exists, gives

a0 = 2
D
2

a1 = −2
D
2

[
ϕ2 + (D − 1)ϕ2

5 + (D − 2)A2
5

]
a2 = 2

D
2

[
1

6
F 2
µν +

1

6
(D − 2)(∂µA5ν)

2 − 1

3
(∂A5)

2 +
1

6
(D − 2)(D − 4)A4

5

+
1

2
(∂µϕ)

2 +
1

2
ϕ4 +

1

6
(D − 1)(∂µϕ5)

2 +
1

6
(D − 1)(D − 3)ϕ4

5

+ (D − 2)(D − 3)ϕ2
5A

2
5 + (D − 2)ϕ2A2

5 + (D − 3)ϕ2ϕ2
5

− 2(D − 2)ϕ5A
µ
5∂µϕ− 2ϕϕ5∂ · A5

]
. (A.2)

For D = 2 we find

a0 = 2 (A.3)

a1 = −2
[
ϕ2 + ϕ2

5

]
(A.4)

a2 = 2

[
1

6
F 2
µν −

1

3
(∂A5)

2 +
1

2
(∂µϕ)

2 +
1

2
ϕ4

+
1

6
(∂µϕ5)

2 − 1

6
ϕ4
5 − ϕ2ϕ2

5 − 2ϕϕ5∂ · A5

]
. (A.5)

Similarly, in D = 4 these become

a0 = 4 (A.6)

a1 = −4
[
ϕ2 + 3ϕ2

5 + 2A2
5

]
(A.7)

a2 = 4

[
1

6
F 2
µν +

1

3
(∂µA5ν)

2 − 1

3
(∂A5)

2 +
1

2
(∂µϕ)

2 +
1

2
ϕ4

+
1

2
(∂µϕ5)

2 +
1

2
ϕ4
5 + 2ϕ2

5A
2
5 + 2ϕ2A2

5 + ϕ2ϕ2
5

− 4ϕ5A
µ
5∂µϕ− 2ϕϕ5∂ · A5

]
. (A.8)

Up to total derivatives, the last term can also be written as

a2 = 4

[
1

6
F 2
µν +

1

6
F 2
5µν +

1

2
(∂µϕ)

2 +
1

2
ϕ4

+
1

2
(∂µϕ5)

2 +
1

2
ϕ4
5 + 2ϕ2

5A
2
5 + 2ϕ2A2

5 + ϕ2ϕ2
5

+ 2Aµ5(ϕ∂µϕ5 − ϕ5∂µϕ)

]
. (A.9)
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Note that certain coefficients show a continuous phase symmetry with respect to a dou-

blet, Φ :=

(
ϕ
ϕ5

)
, under Φ → R(α)Φ with R(α) an SO(2) rotation by angle α. This is

a symmetry of the Dirac theory (1.1) as it can – in the massless limit – be absorbed by
a (global) chiral transformation of ψ → eiαγ5ψ. It changes the effective action, (1.2), by
a constant if we absorb the change by defining a new, equivalent set of gamma matrices,
Γµ = e−2iαγ5γµ (with Γ5 = γ5).

This symmetry carries over to the amplitudes, as can, in the standard formalism, be easily
verified diagrammatically using the fact that the Dirac propagator in this limit anticommutes
with γ5. However, since the Seeley-DeWitt expansion is a large mass expansion, here the
only coefficients where we can expect it to be respected are those in Γ[ϕ, ϕ5, A,A5] that
are independent of mass (and therefore correspond to logarithmic divergences – see (2.8)).
These are precisely a1 for D = 2 and a2 for D = 4, where this SO(2) symmetry is manifest:

a1
D=2
= −2

∣∣Φ∣∣2 (A.10)

a2
D=4
= 4

[1
2

∣∣∂µΦ∣∣2 + 1

2

∣∣Φ∣∣4 + 2A2
5

∣∣Φ∣∣2 + 2Aµ5ϵijΦ
i∂µΦ

j
]
. (A.11)
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