A sph model with open relaxation boundary for wave generation and absorption

G Zhu

J Hughes School of Engineering, Computing and Mathematics

S Zheng

D Greaves School of Engineering, Computing and Mathematics

Let us know how access to this document benefits you

General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to the work immediately and investigate your claim.

Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-research

Recommended Citation
This Conference Proceeding is brought to you for free and open access by the Faculty of Science and Engineering at PEARL. It has been accepted for inclusion in School of Engineering, Computing and Mathematics by an authorized administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.
A SPH Model with Open Relaxation Boundary for Wave Generation and Absorption

Guixun Zhu, Jason Hughes, Siming Zheng and Deborah Greaves
School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

ABSTRACT
In this paper, a numerical wave tank with open relaxation boundary for wave simulation is presented under the framework of weakly compressible Smoothed Particle Hydrodynamics (SPH). The open relaxation boundary consists of open boundaries and relaxation particles. A relaxation function is applied for the relaxation particles which are placed between the inflow/outflow zone and the fluid domain. Open particles lie in the inflow/outflow regions to avoid kernel truncation. The open particles and relaxation particles can be created and deleted depending on the fluid motion around the open boundaries, and the properties of these particles can be obtained from theoretical resolution or by extrapolating within the domain. The model is validated by simulating a 2nd Stokes wave and wave runup on a beach. The results demonstrate that the present SPH model with open relaxation boundary works well in wave generation and absorption.

KEY WORDS: Smoothed Particle Hydrodynamics; Open Boundary; Wave Simulation.

INTRODUCTION
Smoothed particle hydrodynamics (SPH) is a numerical method originally developed for astrophysical modeling (Gingold and Monaghan, Lucy, 1977) and later adapted for free-surface flow simulations (Monaghan, 1994). In recent years, the application of SPH to engineering problems has had a steady increase. SPH is a Lagrangian and mesh-less method, which uses a series of particles carrying physical properties to describe computational fluid dynamics (Liu and Liu, 2010). The Lagrangian reference frame of SPH makes it useful in solving problems with large deformations and complex free surfaces (Ye et al., 2019).

In this regard, SPH has been successfully applied to a number of free-surface problems that involve wave simulation and wave structure interaction (Liu and Zhang, 2019, Gotoh et al., 2018). Bouscasse et al. (2013) described a complete algorithm able to compute fully coupled viscous water wave and solid interactions using a δ–SPH solver. Altomare et al (2017) presented a fully comprehensive SPH implementation of wave generation and active wave absorption for long-crested monochromatic and random waves using a piston-type wavemaker. Crespo et al. (2017) applied a GPU-accelerated SPH code (DualSPHysics) to simulate wave interaction with a floating offshore moored OWSC device. It was demonstrated that the model was able to reproduce the water surface correctly inside the chamber. Meringolo et al. (2018) presented an analysis of the variation with time of mechanical and internal energies during wave generation, propagation and absorption. Zhang et al. (2018) applied SPH in the simulations of an oscillating wave surge converter (OWSC). The results demonstrated that the active power of a land hinged OWSC strongly depends on both the power take off damping coefficients and the wave periods. He et al. (2019) presented a numerical investigation of the solitary wave breaking over a slope by using a enhanced SPH model. Brito et al. (2019) presented a SPH model with nonlinear mechanical constraints for OWSC and analyzed the effect of the flap inertia.

Inflow and outflow boundary conditions can limit the size of the computational domain to a region of interest. An open boundary near inflow and outflow boundary needs some special attention to ensure reliable results. The topic of open boundaries in SPH was previously investigated. A characteristic-based non-reflecting open boundary formulation for internal flows has been proposed by Lastiwka et al (2009). Federico et al. (2012) presented an implementation of open boundary conditions for free-surface flow. Buffer layers are created at inflow/outflow regions. Physical variables of outflow buffer particles are frozen with the exception of their positions that evolve according to the velocities. Ferrand et al. (2017) introduced a different approach based on the generalization of the semi-analytical boundary conditions method to impose unsteady open boundaries. Tafuni et al (2018) proposed a versatile algorithm by using the higher order interpolation scheme of Liu and Liu. (2010) to extrapolate the property of buffer particles. Ni et al. (2018) presented a wave generation and absorption technique with non-reflective open boundaries in 2018, which was capable of generating multiple types of waves, including solitary waves, linear and second-order regular waves. In 2019, Tim et al. (2019) also introduced the implementation of non-linear wave generation and absorption by open boundaries in DualSPHysics. The target wave was accurately produce by considering the inlet and outlet velocity correction. Relaxation zone is a numerical method in which the velocity...
This research aims to develop a SPH model for wave generation and absorption by combining open boundary and relaxation zone. Relaxation zone is used to generate and absorb waves, while open boundary is imposed to allow wave tank to be short, and hence reduce the computational cost of simulation. The remainder of this paper is organized as follows. The SPH model and the open relaxation boundary are described in Section 2 and Section 3. Validation of the present model, including wave simulation and wave runup on a beach, is described in Section 4. Finally, conclusions are drawn in Section 5.

SPH MODEL

In this study, the flow is assumed to be viscous, weakly–compressible, and adiabatic. The adopted governing equations consist of the Navier–Stokes equations in the Lagrange framework:

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= -\nabla P + F_a + \mathbf{g}, \\
\nabla \cdot \mathbf{u} &= 0, \\
\rho &= \rho_0, \\
\mathbf{r} &= \mathbf{u}, \\
\end{align*}
\]

where \(\rho, \rho_0, \mathbf{u}, t, \mathbf{r} \) and \(P \) denote the instant density, initial density, velocity vector, time, position vector and pressure, respectively. \(F_a \) is the viscosity term and \(\mathbf{g} \) represents the gravitational acceleration. The governing equation can be discretized by an SPH approximation. The discrete pressure gradient can be written as:

\[
\frac{1}{\rho_i} \nabla P_i = -\frac{1}{\rho_i} \sum_j (P_j + P_i) \cdot W_{ij} V_j,
\]

where \(W_{ij} = W(r_{ij} - r_i, h) \) is the kernel function (Gauss kernel is used in this paper), \(h = 1.2 \) is the smoothing length defining the influence range. Subscripts \(i \) and \(j \) denote the particle index, \(V_j \) is the volume of the particle \((V_j = m_j/\rho_j, m \) denotes mass). The artificial viscosity term can be added to the momentum equation to produce bulk and shear viscosity and also to stabilize the scheme as follows

\[
F_a = \sum_j \alpha h c \frac{(u_j - u_i) \cdot (r_j - r_i)}{|r_j - r_i|^2} \cdot W_{ij} V_j,
\]

where \(u_i \) is the velocity of point \(i \). Furthermore, the relationship between the artificial viscous coefficient \(\alpha \) (\(\alpha = 0.001 \) in this paper) and the physical kinematic viscosity \(\nu \) is

\[
\nu = \frac{\alpha h c}{2(dim + 2)},
\]

The open relaxation boundaries are implemented as open and relaxation particles zones. Physical quantities, such as velocity, surface height and pressure, can be applied to these particles. The imposed physical quantities can originate from wave theory or data from other numerical simulation results. The schematic in Fig. 1 briefly depicts the open relaxation boundary. Open particles zones are placed in the inflow/outflow regions to cover the truncated kernel area. The number of open particle layers is determined by the kernel function and compact support. In this work, each open particles zone consists of 4 layers of buffer particles. Relaxation particles are immediately followed by boundary particles for wave generation and absorption. A relaxation function is used in relaxation particles zones to ensure a smooth and stable flow field.

The position of each kind of particle is updated according to the velocity in the time integration method. The position is used as a basis to distinguish particle species. The variation of particle species obeys the following rules:
the nearby relaxation particles. Thus, we can construct a function of local pressure and velocity reconstruction field here and is influenced by the support domain of interpolation nodes. The approximation of local pressure of velocity field function in the open region is given as:

\[f^o(r) = q^T(r)c(r), \]

where \(c(r) \) is the basis function and \(m \) is the term numbers of basis function. In this work, the quadratic basis is used as

\[q^T(r) = [1, x, y, x^2, xy, y^2], m = 6. \]

\(c(r) \) is the undetermined coefficients and can be expressed as

\[c(r) = [c(r_1), c(r_2), ..., c(r_m)]. \]

Since pressure and velocity are interpolated here, \(f^o(r) \) can denote the local pressure and velocity reconstruction field here and is influenced by the nearby relaxation particles. Thus, we can construct a function of weighted residual \(J \):

\[J = \sum_{j=1}^{n} W_i(r_j)[f^o(r_j) - f(r_j)]^2 = \sum_{j=1}^{n} W_i(r_j)[q^T(r_j)c(r_j) - f(r_j)]^2]. \]

where \(W_i(r_j) \) is a weight function and \(n \) is the number of relaxation particles inside the support domain of the weight function. For an arbitrary relaxation particle, the value of \(c(r) \) can be determined by the minimizing the weighted residual \(J \)

\[\frac{\partial J}{\partial c} = A(r)c(r) - B(r)F = 0, \]

where \(A(r) \) is given as

\[A(r) = \sum_{j=1}^{n} W_i(r_j)q^T(r_j)q(r_j), \]

and \(B(r) \) is given as

\[B(r) = q^T(r)W_i(r) = [q(r_1)W_i(r_1), q(r_2)W_i(r_2), ..., q(r_n)W_i(r_n)], \]

and \(F \) is field value

\[F = [f_1, f_2, ..., f_n], \]

Solving for \(c(r) \) from Eq. (13) and substituting it into Eq. (9) leads to

\[f^o(r) = q^T(r)c(r) = q^T(r)A^{-1}(r)B(r)F = \Phi^T(r)F, \]

where \(\Phi^T(r) \) is the shape function. The first derivative of the field function is given as

\[f^{i^o}_i(r) = \Phi^T_i(r)F = (q^T(r)A^{-1}(r)B(r)+q^T(r)A^{-1}(r)B(r)+q^T(r)A^{-1}(r)B(r))F, \]

The pressure or velocity of open particles can be inferred from the interpolated nodes. The open particles are perfectly connected to the relaxation particles for horizontal velocities by the use of relaxation equation. However, the pressure interface between these two kinds of particles still needs to be considered carefully. Radiation condition proposed by Orlanski (1976), works well as passive boundary, allowing disturbances to propagate out of the computational domain. The radiation condition is

\[\frac{\partial p}{\partial t} + C_w \frac{\partial p}{\partial n} = 0, \]

where \(C_w = \sqrt{gd} \) (d is free surface level), \(n \) is the vertical direction of open boundary. Thus, the pressure of open particles at now is calculated as:

\[p^{new}_w = p^{last}_w - C_w \cdot t_0 \nabla p^{last}_w |_\text{as}, \]

where \(\nabla p^{last}_w = \nabla p^{last}_w \), \(a \) and \(i \) denote the vertical velocity, open boundaries and interpolation node. \(t_0 \) is the time step. Here, the vertical velocity is \(v_w = v_i \) with the assumption of tangential radiation in Orlanski (1976). The horizontal velocity of the open particle is imposed based on the wave theory. In wave simulations, the free surface level in the open region is not constant. The free surface evolution is performed on the open boundary. The theoretical free surface height at each moment can obviously contaminates the results. And the relaxation particles zone is

Fig. 2 Sketch of computational domain near inflow/outflow region.
found to produce a continuaities in the surface elevation between open particles zones and fluid zones.

The present relaxation technique is an extension to that of Mayer et al. (1998) and Jacobsen et al. (2012). A relaxation function

\[
\alpha_i(x) = \begin{cases}
1 - \frac{\exp(-r_i^2/T)}{\exp(1)}, & i \in r_1, \\
1 - \frac{\exp(-r_i^2/T)}{\exp(1)}, & i \in r_2,
\end{cases}
\]

is applied inside the relaxation zone in the following way

\[
\phi = \alpha_i \phi_{\text{ph}} + (1 - \alpha_i) \phi_{\text{target}},
\]

where \(\phi\) represents horizontal velocity, \(\beta = 3.5, \chi_1 = \frac{|x-x_0|}{L_1}\) and \(\chi_2 = \frac{|x-x_0|}{L_2}\). \(R1\) and \(R2\) are relaxation particles zones as shown in Fig. 1. The definition of \(\chi\) ensures that \(\alpha_i\) is always 1 at the interface between fluid particles zone and the relaxation particles zones, and \(\alpha_i\) is always 0 at the interface between open particles zones and the relaxation particles zones. The vertical velocity and pressure of the relaxation particles are calculated by solving the governing equation.

NUMERICAL RESULTS

In this section, the wave generation and absorption of 2nd Stokes wave is conducted for present SPH numerical wave tank. Then, validated model is applied to simulate the regular wave runup on a beach.

Regular wave simulation

This section is to verify the performance of a SPH–based NWT with open relaxation boundary by comparing the numerical results with the analytical ones. A 2nd Stokes wave (wave period \(T = 1.2\) s, wave height \(H = 0.1\) m and \(H = 0.1\) m and) is simulated for investigating the present model. A 2-D computational domain with water depth \(d = 0.5\) m and length \(L = 6.03\) m (three wave lengths) is used. The accuracy of wave propagation and absorption with open relaxation boundaries is now assessed by comparing SPH surface elevation.

Time series of the water surface elevation at the centre of the domain predicted by the SPH methods with three different resolutions are illustrated in Fig. 3. It is clear that the surface elevation is simulated with a very high accuracy. Both the wave crest and wave are reproduced excellently. For quantifying and better evaluating the comparison between the reference results, the mean average errors for amplitude \(MAE_a\) and phase \(MAE_p\) are used, which are calculated according to equations

\[
MAE_a = \frac{1}{N_e} \sum_{i=1}^{N_e} |A_{\text{ref}} - A_{\text{sph}}|,
\]

\[
MAE_p = \frac{1}{N_e} \sum_{i=1}^{N_e} \left| \frac{\theta_{\text{sph}} - \theta_{\text{ref}}}{A} \right|.
\]
CONCLUSIONS AND DISCUSSION

In this paper, a novel framework has been proposed for simulating wave in SPH numerical wave tank with open relaxation boundary. The open relaxation boundary involves open zones and relaxation zones. The particles in open zone, called open particles, are used for avoiding kernel truncation at inflow/outflow region. Pressure and vertical velocity of the open particles are obtained by using the moving least square construction and radiation condition. The horizontal velocity of the open particles is imposed based on wave theory. A relaxation function is applied for relaxation particles for the horizontal velocity. The pressure and vertical velocity of relaxation particles are calculated by solving the governing equation. Accurate free surface evolution results can be obtained for 2nd stokes wave case and wave runup on a beach. Meanwhile, smooth pressure field near the inflow/outflow region is obtained. The results demonstrate the capability of the present open relaxation boundary to model wave generation and absorption.

ACKNOWLEDGMENTS

Guixun Zhu was supported by the financial support from China Scholarship Council (Grant No. 201806060137). Siming Zheng gratefully acknowledges the support from the European Union funded Marine-I (2nd phase) project (grant no. 05R18P02816), and Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering, Tsinghua University (Grant No. sklhse-2021-E-02).

REFERENCES

